437
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Different Hemi-Salen/Salan Ligand Containing Binuclear Boron-Fluoride Complexes: Synthesis, Spectroscopy, Fluorescence Properties, and Catalysis

, , &
Pages 248-265 | Received 08 Feb 2017, Accepted 30 Mar 2017, Published online: 21 Apr 2017

References

  • Yang, L., Y. Liu, C. Ma, W. Liu, Y. Li, and L. Li. “Naphthalene-Fused BODIPY with Large Stokes Shift as Saturated-Red Fluorescent Dye for Living Cell Imaging.” Dyes Pigments 122 (2015): 1–5 ( and references therein).
  • Kilic, A., C. Kayan, M. Aydemir, F. Durap, M. Durgun, A. Baysal, E. Tas, and B. Gumgum. “Synthesis of New Boron Complexes: Application to Transfer Hydrogenation of Acetophenone Derivatives.” Appl. Organomet. Chem. 25 (2011): 390–4.
  • Kilic, A., M. Aydemir, M. Durgun, N. Meric, Y. S. Ocak, A. Keles, and H. Temel. “Fluorine/Phenyl Chelated Boron Complexes: Synthesis, Fluorescence Properties and Catalyst for Transfer Hydrogenation of Aromatic Ketones.” J. Fluorine Chem. 162 (2014): 9–16.
  • Kilic, A., F. Alcay, M. Aydemir, M. Durgun, A. Keles, and A. Baysal. “Synthesis, Spectroscopic and Catalytic Properties of Some New Boron Hybrid Molecule Derivatives By BF2 And BPh2 Chelation.” Spectrochim. Acta A 142 (2015): 62–72.
  • Suresh, D., C. S. B. Gomes, P. S. Lopes, C. A. Figueira, B. Ferreira, P. T. Gomes, Roberto E. D. Paolo, A. L. Maçanita, M. T. Duarte, A. Charas, J. Morgado, D. V. Viçosa, and M. J. Calhorda. “Luminescent Di- and Trinuclear Boron Complexes Based on Aromatic Iminopyrrolyl Spacer Ligands: Synthesis, Characterization, and Application in OLEDs.” Chem.— A Europ. J. 21 (2015): 9133–49 ( and references therein).
  • Chong, H., H-A. Lin, M-Y. Shen, C-Y Liu, H. Zhao, and H-H. Yu. “Step-Economical Syntheses of Functional BODIPY-EDOT π-Conjugated Materials through Direct C–H Arylation.” Org. Lett. 17, no. 13 (2015): 3198–3201.
  • Yan, W., C. Hong, G. Long, Y. Yang, Z. Liu, Z. Bian, Y. Chen, and C. Huang. “Synthesis, Crystal Structures and Photophysical Properties of Novel Boron-Containing Derivatives of Phenalene with Bright Solid-State Luminescence.” Dyes Pigments 106 (2014): 197–204.
  • Wakamiya, A., K. Mishima, K. Ekawa, and S. Yamaguchi. “Kinetically Stabilized Dibenzoborole as an Electron-Accepting Building Unit.” Chem. Commun. (2008): 579–581.
  • Kotali, A., F. Dimoulaki, E. Kotali, A. Maniadaki, P. A. Harris, E. R. Sokolowska, P. Balczewski, and J. A. Joule. “Synthesis of Novel Dehydroacetic Acid N-Aroylhydrazone-Derived Boron Heterocycles.” Tetrahedron 71 (2015): 7245–9.
  • Barbon, S. M., V. N. Staroverov, and J. B. Gilroy. “Effect of Extended π Conjugation on the Spectroscopic and Electrochemical Properties of Boron Difluoride Formazanate Complexes.” J. Org. Chem. 80 (2015): 5226–35.
  • Guieu, S., J. Pinto, V. L. M. Silva, J. Rocha, and A. M. S. Silva. “Synthesis, Post-Modification and Fluorescence Properties of Boron Diketonate Complexes.” Eur. J. Org. Chem. (2015): 3423–3426 ( and references therein).
  • Aktaş, A. and Y. Gök. “N-Propylphthalimide-Substituted Silver(I) N-Heterocyclic Carbene Complexes and Ruthenium(II) N-Heterocyclic Carbene Complexes: Synthesis and Transfer Hydrogenation of Ketones.” Catal. Lett. 145 (2015): 631–9.
  • Takaya, H., T. Ohta, and R. Noyori In Catalytic Asymmetric Synthesis, Chapter 1. (New York: VCH Publisher Inc, 1993), 1–39.
  • Noyori, R. Asymmetric Catalysis in Organic Synthesis, Chapter 2. (New York: John Wiley & Sons, 1994), 95–121.
  • Gladiali, S. and G. Mestroni Transition Metal for Organic Synthesis, eds. M. Beller, and C. Bolm. (Weinheim: Wiley-VCH, 1998), 97–119.
  • Siegel, H. and V. Himmele. “Synthesis of Intermediates by Rhodium-Catalyzed Hydroformylation.” Angew. Chem. Int. Ed. Eng. 92 (1980): 182–7.
  • Botteghi, C., S. Paganelli, A. Schionato, and M. Marchetti. “The Asymmetric Hydroformylation in the Synthesis of Pharmaceuticals.” Chirality 3 (1991): 355–69.
  • Hou, Q., L. Zhao, H. Zhang, Y. Wang, and S. Jiang. “Synthesis and Luminescent Properties of Two Schiff-base Boron Complexes.” J. Lumin. 126 (2007): 447–51 ( and references therein).
  • Velapoldi, R. A. and H. H. Tønnesen. “Corrected Emission Spectra and Quantum Yields for a Series of Fluorescent Compounds in the Visible Spectral Region.” J. Fluoresc. 14 (2004): 465.
  • Wei, P. and D. A. Atwood. “Bimetallic Borate Derivatives of the Salen Ligands.” Inorg. Chem. 36 (1997): 4060–5.
  • Albani, J. R. Principles and Applications of Fluorescence Spectroscopy, (Oxford, UK: Wiley-Blackwell, 2007), 88–113.
  • Ma, R. Z., Q. C. Yao, X. Yang, and M. Xia. “Synthesis, Characterization and Photoluminescence Properties of Strong Fluorescent BF2 Complexes Bearing (2-quinolin-2-yl)phenol Ligands.” J. Fluorine Chem. 137 (2012): 93–8.
  • Yao, Q. C., D. E. Wu, R. Z. Ma, and M. Xia. “Study on the Structure-Property Relationship in a Series of Novel BF2 Chelates with Multicolor Fluorescence.” J. Organomet. Chem. 743 (2013): 1–9.
  • Ren, Y., X. Liu, W. Gao, H. Xia, L. Ye, and Y. Mu. “Boron Complexes with Chelating Anilido-Imine Ligands: Synthesis, Structures and Luminescent Properties.” Eur. J. Inorg. Chem. (2007): 1808–14.
  • Zassinovic, G. and G. Mestroni. “Asymmetric Hydrogen Transfer Reactions Promoted by Homogeneous Transition Metal Catalysts.” Chem. Rev. 92 (1992): 1051–69.
  • Gamez, P., F. Fache, and M. Lemaire. “Asymmetric Catalytic Reduction of Carbonyl Compounds Using C2 Symmetric Diamines as Chiral Ligands.” Tetrahedron: Asymmetry 6 (1995): 705–18.
  • Bolm, C. “Bis(4,5-dihydrooxazolyl) Derivatives in Asymmetric Catalysis.” Angew. Chem. Int. Ed. Eng. 30 (1991): 542–3.
  • Muller, D., G. Umbricht, B. Weber, and A. Pfaltz. “C2-Symmetric 4,4′,5,5′-Tetrahydrobi(oxazoles) and 4,4′,5,5′-Tetrahydro-2,2′-methylenebis[oxazoles] as Chiral Ligands for Enantioselective Catalysis Preliminary Communication.” Helv. Chim. Acta 74 (1991): 232–40.
  • Fujii, A., S. Hashiguchi, N. Uematsu, T. Ikariya, and R. Noyori J. Am. Chem. Soc. 118 (1996): 2521.
  • Brown, J. M., H. Brunner, W. Leitner, and M. Rose. “Enantioselective Catalytic Transfer Hydrogenation of α,β-unsaturated Carboxylic Acids with Formates Catalyzed by Novel Ruthenium Phosphine Complexes.” Tetrahedron: Asymmetry 2 (1991): 331–4.
  • Johnstone, R. A. W., A. H. Wilby, and I. D. Entwistle. “Heterogeneous Catalytic Transfer Hydrogenation and Its Relation to Other Methods for Reduction of Organic Compounds.” Chem. Rev. 85 (1985): 129–70.
  • Yiğit, M., B. Yiğit, I. Özdemir, E. Çetinkaya, and B. Çetinkaya. “Active Ruthenium-(N-heterocyclic carbene) Complexes for Hydrogenation of Ketones.” Appl. Organomet. Chem. 20 (2006): 322–7.
  • Noyori, R., M. Yamakawa, and S. Hashiguchi. “BINAP: An Efficient Chiral Element for Asymmetric Catalysis.” Acc. Chem. Res. 23 (1990): 345–50.
  • Ram, S. and R. E. Ehrenkaufer. “Ammonium Formate in Organic Synthesis: A Versatile Agent in Catalytic Hydrogen Transfer Reductions.” Synthesis 1988: 91–5.
  • Pamies, O. and J. -E. Backvall. “Studies on the Mechanism of Metal-Catalyzed Hydrogen Transfer from Alcohols to Ketones.” Chem.— A Eur. J. 23 (2001): 5052–8 ( and references therein).
  • Takehara, J., S. Hashiguchi, A. Fujii, S. Inoue, T. Ikariya, and R. Noyori. “Amino Alcohol Effects on the Ruthenium(II)-Catalysed Asymmetric Transfer Hydrogenation of Ketones in Propan-2-ol.” Chem. Commun. (1996): 233–4.
  • Doucet, H., T. Ohkuma, K. Murata, T. Yokozawa, M. Kozawa, E. Katayama, F. A. England, T. Ikariya, and R. Noyori. “Trans-[RuCl2(phosphane)2(1,2-diamine)] and Chiral trans-[RuCl2(diphosphane)(1,2-diamine)]: Shelf-Stable Precatalysts for the Rapid, Productive, and Stereoselective Hydrogenation of Ketones.” Angew. Chem. Int. Ed. Eng. 37 (1998): 1703–7.
  • Kelson, E. P. and P. P. Phengsy. “Synthesis and Structure of a Ruthenium (II) Complex Incorporating κ N Bound 2-Pyridonato Ligands; A New Catalytic System for Transfer Hydrogenation of Ketones.” J. Chem. Soc. Dalton Trans. (2000): 4023–4.
  • Chen, J. S., Y. L i, Z. Dong, B. Li, and J. Gao. “Asymmetric Transfer Hydrogenation of Aromatic Ketones Catalyzed by the Iridium Hydride Complex Under Ambient Conditions.” Tetrahedron Lett. 45 (2004): 8415–8.
  • Hannedouche, J., G. J. Clarkson, and M. Wills. “A New Class of “Tethered” Ruthenium (II) Catalyst for Asymmetric Transfer Hydrogenation Reactions.” J. Am. Chem. Soc. 126 (2004): 986–7.
  • Gao, J. -X., T. Ikariya, and R. Noyori. “A Ruthenium (II) Complex with a C 2-Symmetric Diphosphine/diamine Tetradentate Ligand for Asymmetric Transfer Hydrogenation of Aromatic Ketones.” Organometallics 15 (1996): 1087–9.
  • Gamez, P., F. Fache, and M. Lemaire. “Asymmetric Catalytic Reduction of Carbonyl Compounds Using C 2 Symmetric Diamines as Chiral Ligands.” Tetrahedron: Asymmetry 6 (1995): 705–18.
  • Jiang, Y., Q. Jiang, and X. Zhang. “A New Chiral Bis (oxazolinylmethyl) Amine Ligand for Ru-catalyzed Asymmetric Transfer Hydrogenation of Ketones.” J. Am. Chem. Soc. 120 (1998): 3817–8.
  • Ikariya, T. and A. J. Blocker. “Asymmetric Transfer Hydrogenation of Ketones with Bifunctional Transition Metal-Based Molecular Catalysts.” Acc. Chem. Res. 40 (2007): 1300–8.
  • Jiang, Y., Q. Jiang, and X. Zhang. “A New Chiral Bis (oxazolinylmethyl) Amine Ligand for Ru-catalyzed Asymmetric Transfer Hydrogenation of Ketones.” J. Am. Chem. Soc. 120 1998: 3817–8.
  • Haack, K.-J., S. Hashiguchi, A. Fuji, T. Ikariya, and R. Noyori. “The Catalyst Precursor, Catalyst, and Intermediate in the RuII-Promoted Asymmetric Hydrogen Transfer Between Alcohols and Ketones.” Angew. Chem. Int. Ed. Eng. 36 (1997): 285–8.
  • Ikariya, T. and A. J. Blocker. “Asymmetric Transfer Hydrogenation of Ketones with Bifunctional Transition Metal-Based Molecular Catalysts.” Acc. Chem. Res. 40 (2007): 1300–8.
  • Gao, J.-X., T. Ikariya, and R. Noyori. “A Ruthenium (II) Complex with a C 2-Symmetric Diphosphine/diamine Tetradentate Ligand for Asymmetric Transfer Hydrogenation of Aromatic Ketones.” Organometallics 15 (1996): 1087–9.
  • Jiang, Y., Q. Jiang, and X. Zhang. “A New Chiral Bis (oxazolinylmethyl) Amine Ligand for Ru-catalyzed Asymmetric Transfer Hydrogenation of Ketones.” J. Am. Chem. Soc. 120 (1998): 3817–8.
  • Faller, J. W. and A. R. Lavoie. “Catalysts for the Asymmetric Transfer Hydrogenation of Ketones Derived from L-prolinamide and (p-cymeneRuCl2) 2 or (Cp* RhCl2) 2.” Organometallics 20 (2001): 5245–7.
  • Özdemir, İ., S. Yaşar, and B. Çetinkaya. “Ruthenium (II) N-heterocyclic Carbene Complexes in the Transfer Hydrogenation of Ketones.” Transition Met. Chem. 30 (2005): 831–5.
  • Gao, J.-X., X.-D. Yi, P.-P. Xu, C.-L. Tang, H.-L. Wan, and T. Ikariya. “New Chiral Cationic Rhodium–Aminophosphine Complexes for Asymmetric Transfer Hydrogenation of Aromatic Ketones.” J. Org. Chem. 592 (1999): 290–5.
  • Gao, J.-X., H. Zhang, X.-D. Yi, P.-P. Xu, C.-L. Tang, H.-L. Wan, K.-R. Tsai, and T. Ikariya. “New Chiral Catalysts for Reduction of Ketones.” Chirality 12 (2000): 383–8.
  • Chen, J.-S., Y.-Y. Li, Z.-R. Dong, B.-Z. Li, and J.-X. Gao. “Asymmetric Transfer Hydrogenation of Aromatic Ketones Catalyzed by the Iridium Hydride Complex Under Ambient Conditions.” Tetrahedron Lett. 45 (2004): 8415–8.
  • Dong, Z.-R., Y.-Y. Li, J.-S. Chen, B.-Z. Li, Y. Xing, and J.-X. Gao. “Highly Efficient Iridium Catalyst for Asymmetric Transfer Hydrogenation of Aromatic Ketones Under Base-Free Conditions.” Organic Lett. 7 (2005): 1043–5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.