180
Views
45
CrossRef citations to date
0
Altmetric
Original Articles

Facile Synthesis of 7-Aryl-benzo[h]tetrazolo[5,1-b]quinazoline-5,6-dione Fused Polycyclic Compounds by Using a Novel Magnetic Polyurethane Catalyst

ORCID Icon, &
Pages 266-278 | Received 24 Oct 2016, Accepted 27 Apr 2017, Published online: 30 May 2017

References

  • Maleki, A., H. Movahed, and P. Ravaghi. “Magnetic cellulose/Ag as a novel eco-friendly nanobiocomposite to catalyze synthesis of chromene-linked nicotinonitriles.” Carbohydr. Polym. 156 (2017): 259–67.
  • Maleki, A., H. Movahed, P. Ravaghi, and T. Kari. “Facile in situ synthesis and characterization of a novel PANI/Fe3O4/Ag nanocomposite and investigation of catalytic applications.” RSC Adv. 6 (2016): 98777–87.
  • Maleki, A., H. Movahed, and R. Paydar. “Design and development of novel cellulose/γ-Fe2O3/Ag nanocomposite: a potential green catalyst and antibacterial agent.” RSC Adv. 6 (2016): 13657–65.
  • Maleki, A., and R. Paydar. “Bionanostructure-catalyzed one-pot three-component synthesis of 3,4-dihydropyrimidin-2(1H)-one derivatives under solvent-free conditions.” React. Funct. Polym. 109 (2016): 120–4.
  • Pfister, D. P., Y. Xia, and R. C. Larock. “Recent Advances in Vegetable Oil-Based Polyurethanes.” ChemSusChem 4 (2011): 703–17.
  • Meshram, M. R., N. K. Agrawal, B. Sinha, and P. S. Misra. “Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber.” J. Magn. Magn. Mater. 271 (2004): 207–14.
  • Han, P., X. Xu, and M. Wang. “Synthesis and magnetic properties of BaFe12O19 hexaferrite nanoparticles by a reverse microemulsion technique.” J. Phys. Chem. C 111 (2007): 5866–70.
  • Li, Z. W., C. K. Ong, Z. Yang, F. L. Wei, X. Z. Zhou, J. H. Zhao, and A. H. Morrish. “Site preference and magnetic properties for a perpendicular recording material: BaFe12−xZnx/2Zrx/2O19 nanoparticles.” Phys. Rev. B 62 (2000): 6530–7.
  • Rahimi, R., A. Maleki, and S. Maleki. ”Preparation of magnetic fluorochromate hybrid nanomaterials with triphenylphosphine surface modified iron oxide nanoparticles and their characterization.” J. Magn. Magn. Mater. 355 (2014): 300–5.
  • Solov, E. D., E. V Pashkova, A. E. Perekos, B. S. Khomenko, and A. G. Belous. “Structural and magnetic properties of Ba0.7Sr0.3Fe12 − 2xCoxTixO19M-type hexaferrites.” Inorg. Mater. 49 (2013): 621.
  • Cernea, M., S.-G. Sandu, C. Galassi, R. Radu, and V. Kuncser. “Magnetic properties of BaxSr1-x Fe12O19 (x = 0.05–0.35) ferrites prepared by different methods.” J. Alloys Compd. 561 (2013): 121–8.
  • Wen, S. L., Y. Liu, X. C. Zhao, J. W. Cheng, and H. Li. “Synthesis, dual-nonlinear magnetic resonance and microwave absorption properties of nanosheet hierarchical cobalt particles.” Phys. Chem. Chem. Phys. 16 (2014): 18333–40.
  • Song, F., X. Shen, J. Xiang, and Y. Zhu. “Characterization and magnetic properties of BaxSr1−x Fe12O19 (x = 0–1) ferrite hollow fibers via gel-precursor transformation process.” J. Alloys Compd. 507 (2010): 297–301.
  • Pereira, F. M. M., M. R. P. Santos, R. S. T. M. Sohn, J. S. Almeida, A. M. L. Medeiros, M. M. Costa, and A. S. B. Sombra. “Magnetic and dielectric properties of the M-type barium strontium hexaferrite (BaxSr1-xFe12O19) in the RF and microwave (MW) frequency range.” J. Mater. Sci.: Mater. Electron. 20 (2009): 408–17.
  • Haleel, A., P. Arthi, N. Dastagiri Reddy, V. Veena, N. Sakthivel, Y. Arun, P. T. Perumal, and A. Kalilur Rahiman. “DNA binding, molecular docking and apoptotic inducing activity of nickel(II), copper(II) and zinc(II) complexes of pyridine-based tetrazolo[1,5-a]pyrimidine ligands.” RSC Adv. 4 (2014): 60816–60830.
  • Orru, R. V. A., and Ruijter, E. Synthesis of Heterocycles via Multicomponent Reactions II. Springer-Verlag, Berlin, Germany, (2010).
  • Domling, A., W. Wang, and K. Wang. “Chemistry and biology of multicomponent reactions.” Chem. Rev. 112 (2012): 3083–135.
  • Biggs-Houck, J. E., A. Younai, and J. T. Shaw. “Recent advances in multicomponent reactions for diversity-oriented synthesis.” Curr. Opin. Chem. Biol. 14 (2010): 371–82.
  • Patil, Y. P., P. J. Tambade, K. M. Deshmukh, and B. M. Bhanage. “Synthesis of quinazoline-2, 4 (1H, 3H)-diones from carbon dioxide and 2-aminobenzonitriles using [Bmim] OH as a homogeneous recyclable catalyst.” Catal. Today 148 (2009): 355–60.
  • Maleki, A. and A. Sarvary. “Synthesis of tetrazoles via isocyanide-based reactions.” RSC Adv. 5 (2015): 60938–55.
  • Sarvary, A., and A. Maleki. “A review of syntheses of 1, 5-disubstituted tetrazole derivatives.” Mol. Divers. 19 (2015): 189–212.
  • Welz, R., and S. Müller. “5-(Benzylmercapto)-1H-tetrazole as activator for 2′-O-TBDMS phosphoramidite building blocks in RNA synthesis.” Tetrahedron Lett. 43 (2002): 795–7.
  • Bekhit, A. A., O. A. El-Sayed, E. Aboulmagd, and J. Y. Park. “Tetrazolo[1,5-a]quinoline as a potential promising new scaffold for the synthesis of novel anti-inflammatory and antibacterial agents.” Eur. J. Med. Chem. 39 (2004): 249–55.
  • Kategaonkar, A. H., R. U. Pokalwar, S. S. Sonar, V. U. Gawali, B. B. Shingate, and M. S. Shingare. “Synthesis, in vitro antibacterial and antifungal evaluations of new a-hydroxyphosphonate and new a-acetoxyphosphonate derivatives of tetrazolo[1,5-a]quinolone.” Eur. J. Med. Chem. 45 (2010): 1128–32.
  • Desos, P., G. Schlewer, C. Lugnier, A. Beretz, J. P. Maffrand, A. Bernat, and C. G. Wermuth. “Triazolo[4,3-a]quinoline and tetrazolo[1,5-a]quinoline derivatives. Synthesis and pharmacological evaluation as platelets antiaggregating agents acting through phosphodiesterases inhibition.” Eur. J. Med. Chem. 26 (1991): 189–96.
  • Rostom, S. A. F., H. M. A. Ashour, H. A. A. El Razik, A. E. F. H. A. El Fattah, and N. N. El-Din. “Azole antimicrobial pharmacophore-based tetrazoles: Synthesis and biological evaluation as potential antimicrobial and anticonvulsant agents.” Bioorg. Med. Chem. 17 (2009): 2410–22.
  • Asif, M. “Chemical characteristics, synthetic methods, and biological potential of quinazoline and quinazolinone derivatives.” Int. J. Med. Chem. 2014 (2014): 1–27.
  • Balakumar, C., P. Lamba, D. P. Kishore, B. L. Narayana, K. V. Rao, K. Rajwinder, A. R. Rao, B. Shireesha, and B. Narsaiah. “Synthesis, anti-inflammatory evaluation and docking studies of some new fluorinated fused quinazolines.” Eur. J. Med. Chem. 45 (2010): 4904–13.
  • Kuyper, L. F., D. P. Baccanari, M. L. Jones, R. N. Hunter, R. L. Tansik, S. S. Joyner, C. M. Boytos, S. K. Rudolph, V. Knick, and H. R. Wilson. “High-affinity inhibitors of dihydrofolate reductase: Antimicrobial and anticancer activities of 7,8-dialkyl-1,3-diaminopyrrolo[3,2-f]quinazolines with small molecular size.” J. Med. Chem. 39 (1996): 892–903.
  • Zhang, C.-B., C.-W. Yang, X.-Q. Deng, and Z. -S. Quan. “Design and synthesis of 6-alkyoxyl[1,2,4]triazolo[1,5-a]quinazoline derivatives with anticonvulsant activity.” Med. Chem. Res. 21 (2012): 3294–3300.
  • Ye, C., J. You, X. Li, R. You, Y. Weng, J. Li, and Y. Wang. "Design, synthesis and anticoccidial activity of a series of 3-(2-(2-methoxyphenyl)-2-oxoethyl) quinazolinone derivatives." Pestic. Biochem. Physiol. 97 (2010): 194–8.
  • Jose, A., A. B. Chittethu, S. Sankaran, S. T. Suja, and K. Prem Ekambaram. “Synthesis and characterization of quinazolinone derivatives against mammary carcinoma.” J. Pharm. Res. 6 (2013): 933–8.
  • Maleki, A., M. Aghaei, and R. Paydar. “Highly efficient protocol for the aromatic compounds nitration catalyzed by magnetically recyclable core/shell nanocomposite.” J. Iran. Chem. Soc. 14 (2017): 485–90.
  • Maleki, A., M. Aghaei, H. R. Hafizi-Atabak, and M. Ferdowsi. “Ultrasonic treatment of CoFe2O4@B2O3-SiO2 as a new hybrid magnetic composite nanostructure and catalytic application in the synthesis of dihydroquinazolinones.” Ultrason. Sonochem. 37 (2017): 260–6.
  • Maleki, A., and M. Aghaei. “Sonochemical rate enhanced by a new nanomagnetic embedded core/shell nanoparticles and catalytic performance in the multicomponent synthesis of pyridoimidazoisoquinolines.” Ultrason. Sonochem. 38 (2017): 115–9.
  • Maleki, A., P. Zand, and Z. Mohseni. “Fe3O4@PEG-SO3H rod-like morphology along with the spherical nanoparticles: novel green nanocomposite design, preparation, characterization and catalytic application.” RSC Adv. 6 (2016): 110928–34.
  • Zhang, Q., K. D. O. Vigier, S. Royer, and F. Jerome. “Deep eutectic solvents: syntheses, properties and applications.” Chem. Soc. Rev. 41 (2012): 7108–46.
  • Choi, Y. H., J. van Spronsen, Y. Dai, M. Verberne, F. Hollmann, I. W. C. E. Arends, G.-J. Witkamp, and R. Verpoorte. “Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology?” Plant Physiol. 156 (2011): 1701–5.
  • Carriazo, D., M. C. Serrano, M. C. Gutiérrez, M. L. Ferrer, and F. del Monte. “Deep-eutectic solvents playing multiple roles in the synthesis of polymers and related materials.” Chem. Soc. Rev. 41 (2012): 4996–5014.
  • Antypenko, L. M., S. I. Kovalenko, O. M. Antypenko, A. M. Katsev, and O. M. Achkasova. “Design and evaluation of novel antimicrobial and anticancer agents among tetrazolo[1,5-c]quinazoline-5-thione S-derivatives.” Sci. Pharm. 81 (2013): 15.
  • Gein, V. L., M. I. Kazantseva, T. M. Zamaraeva, L. F. Gein, and P. A. Slepukhin. “9-Aryl-5,6,7,9-tetrahydrotetrazolo[5,1-b]quinazolin-8(4H)-ones.” Russ. J. Gen. Chem. 85 (2015): 1984–6.
  • Zhang, H.-J., S.-B. Wang, and Z.-S. Quan. “Synthesis and antidepressant activities of 4-(substituted-phenyl)tetrazolo[1,5-a]quinazolin-5(4H)-ones and their derivatives.” Mol. Divers. 19 (2015): 817–28.
  • Da Settimo, A., G. Primofiore, F. Da Settimo, G. Pardi, F. Simorini, and A. M. Marini. “An approach to novel fused triazole or tetrazole derivatives starting from benzimidazo[1,2-a]quinazoline-5(7H)-one and 5,7-dihydro-5-oxopyrido[3′,2′:5,6]pyrimido[1,2-a]benzimidazole.” J. Heterocycl. Chem. 39 (2002): 1007–12.
  • Maleki, A., and S. Azadegan. “Preparation and characterization of silica-supported magnetic nanocatalyst and application in the synthesis of 2-amino-4H-chromene-3-carbonitrile derivatives.” Inorg. Nano-Met. Chem. 47 (2017): 917–24.
  • Maleki, A., and S. Azadegan. “Amine-functionalized silica-supported magnetic nanoparticles: Preparation, characterization and catalytic performance in the chromene synthesis.” J. Inorg. Organomet. Polym. Mater. 27 (2017): 714–9.
  • Wu, L. “Synthesis and biological evaluation of novel 1,2-naphthoquinones possessing tetrazolo[1,5-a]pyrimidine scaffolds as potent antitumor agents.” RSC Adv. 5 (2015): 24960–5.
  • Kalniņa, A., Ē. Bizdēna, G. Kiselovs, A. Mishnev, and M. Turks. “Structural proof of tetrazolo[1,5-a]quinazoline Derivatives and their application in the synthesis of 4-Amino-2-(1,2,3-triazol-1-yl)quinazolines.” Chem. Heterocycl. Compd. 49 (2014): 1667–73.
  • Tandon, V. K., R. V Singh, and D. B. Yadav. “Synthesis and evaluation of novel 1,4-naphthoquinone derivatives as antiviral, antifungal and anticancer agents.” Bioorg. Med. Chem. Lett. 14 (2004): 2901–2904.
  • Chen, K.-T., M.-J. Hour, S.-C. Tsai, J.-G. Chung, S.-C. Kuo, C.-C. Lu, Y.-J. Chiu, Y.-H. Chuang, and J.-S. Yang. “The novel synthesized 6-fluoro-(3-fluorophenyl)-4-(3-methoxyanilino)quinazoline (LJJ-10) compound exhibits anti-metastatic effects in human osteosarcoma U-2OS cells through targeting insulin-like growth factor-I receptor.” Int. J. Oncol. 39 (2011): 611.
  • Maleki, A. and R. Paydar. “Graphene oxide–chitosan bionanocomposite: a highly efficient nanocatalyst for the one-pot three-component synthesis of trisubstituted imidazoles under solvent-free conditions.” RSC Adv. 5 (2015): 33177–84.
  • Kaur, T., S. Kumar, B. H. Bhat, B. Want, and A. K. Srivastava. “Effect on dielectric, magnetic, optical and structural properties of Nd–Co substituted barium hexaferrite nanoparticles.” Appl. Phys. A 119 (2015): 1531–40.
  • Sadeghzadeh, S. M. and M. A. Nasseri. “Methylene dipyridine nanoparticles stabilized on Fe3O4 as catalysts for efficient, green, and one-pot synthesis of pyrazolophthalazinyl spirooxindoles.” Catal. Today 217 (2013): 80–5.
  • Chaudhary, A. and J. M. Khurana. “2-Hydroxy-1,4-Naphthoquinone: A versatile synthon in organic synthesis.” Curr. Org. Chem. 20 (2016): 1314–44.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.