251
Views
59
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis and Characterization of Nanorod Magnetic Co–Fe Mixed Oxides and its Catalytic Behavior Towards One-Pot Synthesis of Polysubstituted Pyridine Derivatives

, , , , , & show all
Pages 633-643 | Received 05 Feb 2018, Accepted 19 Apr 2018, Published online: 16 May 2018

References

  • L. F. Tietze, “Domino Reactions in Organic Synthesis,” Chemical Reviews 96, (1996): 115–36.
  • A. Khojastehnezhad, F. Moeinpour, and A. Javid, “NiFe2O4@SiO2–PPA Nanoparticle: A Green Nanocatalyst for the Synthesis of β-acetamido Ketones,” Polycyclic Aromatic Compounds. doi: 10.1080/10406638.2017.1335218.
  • L. H. Abdel Rahman, A. M. Abu-Dief, E. F. Newair, and S. K. Hamdan, “Some New Nano-Sized Cr (III) Fe (II) Co (II) and Ni (II) Complexes Incorporating 2-((E)-(Pyridine-2-Ylimino) Methyl) Napthalen-1-ol Ligand: Structural Characterization Electrochemical Antioxidant Antimicrobial Antiviral Assessment and DNA Interaction,” Journal of Photochemistry and Photobiology B Biology 160, (2016): 18–31.
  • E. K. Athanassiou, R. N. Grass, and W. J. Stark, “Chemical Aerosol Engineering As a Novel Tool for Material Science: From Oxides to Salt and Metal Nanoparticles,” Aerosol Science and Technology 44, (2010): 161–72.
  • X. Yang, E. A. Fugate, Y. Mueanngern, and L. R. Baker, “Photoelectrochemical CO2 Reduction to Acetate on Iron–Copper Oxide Catalysts,” ACS Catalysis 7, (2017): 177–80.
  • S. Hyun, T. Ko, K. Han, and J. H. Oh, “A Wet-Chemical Preparation of a Fe3O4-CuO Composite Powder in Core-Shell Structure,” Physica Status Solidi C Current Topics in Solid State Physics 1, (2004): 3468–71.
  • E. Manova, T. Tsoncheva, D. Paneva, I. Mitov, K. Tenchev, and L. Petrov, “Mechanochemically Synthesized Nano-Dimensional Iron–Cobalt Spinel Oxides as Catalysts for Methanol Decomposition,” Applied Catalysis A: General 277, (2004): 119–27.
  • A. R. Rao, G. R. Reddy, and B. V. Rao, “Stereoselective Synthesis of Theonelladins A-D,” Journal of Organic Chemistry 56, (1991): 4545–7.
  • L. Jayasinghe, C. P. Jayasooriya, N. Hara, and Y. Fujimoto, “A pyridine Ring-Containing Ecdysteroid from Diploclisia Glaucescens,” Tetrahedron Letters 44, (2003): 8769–71.
  • T. Kubota, T. Nishi, E. Fukushi, J. Kawabata, J. Fromont, and J. Kobayashi, “Nakinadine A. a Novel Bis-Pyridine Alkaloid With a β-Amino Acid Moiety From Sponge Amphimedon sp,” Tetrahedron Letters 48, (2007): 4983–5.
  • T. Kanbara, T. Kushida, N. Saito, I. Kuwajima, K. Kubota, and T. Yamamoto, “Preparation and Properties of Highly Electron-Accepting Poly (Pyrimidine-2,5-Diyl),” Chemistry Letters 21, (1992): 583–6.
  • H. Wang, R. Helgeson, B. Ma, and F. Wudl, “Synthesis and Optical Properties of Cross-Conjugated Bis (Dimethylaminophenyl) Pyridylvinylene Derivatives,” Journal of Organic Chemistry 65, (2000): 5862–7.
  • A. I. Pavluchenko, V. F. Petrov, and N. I. Smirnova, “Liquid Crystalline 2,5-Disubstituted Pyridine Derivatives,” Liquid Crystals 19, (1995): 811–21.
  • T. J. Meyer, “Chemical Approaches to Artificial Photosynthesis,” Accounts of Chemical Research 22, (1989): 163–70.
  • B. B. Fredholm, A. P. Ijzerman, K. A. Jacobson, K. N. Klotz, and J. Linden, “International Union of Pharmacology XXV Nomenclature and Classification of Adenosine Receptors,” Pharmacological Reviews 53, (2001): 527–52.
  • M. Sridhar, B. C. Ramanaiah, C. Narsaiah, B. Mahesh, M. Kumaraswamy, K. K. R. Mallu, V. M. Ankathi, and P. S. Rao, “Novel ZnCl2-Catalyzed One-Pot Multicomponent Synthesis of 2-amino-3,5-Dicarbonitrile-6-Thio-Pyridines,” Tetrahedron Letters 50, (2009): 3897–900.
  • F. Belhadj, Z. Kibou, N. Cheikh, N. Choukchou-Braham, and D. Villemin, “Convenient Access to New 4-Substituted Aminopyrido [2,3-d] Pyrimidine Derivatives,” Tetrahedron Letters 56, (2015): 5999–6002.
  • J. Safaei-Ghomi, M. A. Ghasemzadeh, and M. Mehrabi, “Calcium Oxide Nanoparticles Catalyzed One-Step Multicomponent Synthesis of Highly Substituted Pyridines in Aqueous Ethanol Media,” Science Iranian 20, (2013): 549–54.
  • K. N. Singh and S. K. Singh, “Microwave-Assisted One-Pot Multicomponent Synthesis of Highly Substituted Pyridines Using KF/Alumina,” Arkivoc xiii, (2009): 153–60.
  • S. Banerjee and G. Sereda, “One-Step Three-Component Synthesis of Highly Substituted Pyridines Using Silica Nanoparticle as Reusable Catalyst,” Tetrahedron Letters 50, (2009): 6959–62.
  • B. C. Ranu, R. Jana, and S. Sowmiah, “An Improved Procedure for the Three-Component Synthesis of Highly Substituted Pyridines Using Ionic Liquid,” Journal of Organic Chemistry 72, (2007): 3152–4.
  • M. M. Mashaly, and M. Z. Hammoudab, “New Simple and One-Pot Synthetic Routes to Polyfunctionally Substituted Pyridines 1 4-Dihydropyridazines and 4H-1 2-Oxazine,” Zeitschrift Fur Naturforschung. Teil B. Chemie, Biochemie, Biophysik, Biologie Und Verwandte Gebiete 54, (1999): 1205–09.
  • A. Mobinikhaledi, S. Asadbegi, and M. A. Bodaghifard, “Convenient, Multicomponent One-Pot Synthesis of Highly Substituted Pyridines Under Solvent-Free Conditions,” Synthetic Communications 46, (2016): 1605–11.
  • J. Yang, J. Li, P. Hao, F. Qiu, M. Liu, Q. Zhang, and D. Shi, “Synthesis Optical Properties of Multi Donor–Acceptor Substituted AIE Pyridine Derivatives Dyes and Application for Au3+ Detection in Aqueous Solution,” Dyes and Pigments 116, (2015): 97–105.
  • B. Maleki, F. Barakchi Tabrizy, R. Tayebee, and M. Baghayeri, “Oxidative Aromatization of 1,3,5-trisubstituted 2-pyrazolines using Oxalic Acid/Sodium Nitrite System,” Polycyclic Aromatic Compounds. doi:10.1080/10406638.2016.1267019.
  • A. Jamshidi, B. Maleki, F. Mohammadi Zonoz, and R. Tayebee, “HPA-Dendrimer Functionalized Magnetic Nanoparticles (Fe3O4@D-NH2-HPA) as a Novel Inorganic-Organic Hybrid and Recyclable Catalyst for the One-Pot Synthesis of Highly Substituted Pyran Derivatives,” Materials Chemistry and Physics 209, (2018): 46–59.
  • H. Alinezhad, A. Amiri, M. Tarahomi, and B. Maleki, “Magnetic Solid-Phase Extraction of Non-Steroidal Anti-Inflammatory Drugs from Environmental Water Samples Using Polyamidoamine Dendrimer Functionalized with Magnetite Nanoparticles as a Sorbent,” Talanta 183, (2018): 149–57.
  • R. Tayebee, A. Pejhan, H. Ramshini, B. Maleki, N. Erfaninia, Z. Tabatabaie, and E. Esmaeili, “Equisetum Arvense as an Abundant Source of Silica Nanoparticles SiO2/H3PW12O40 Nanohybrid Material as an Efficient and Environmental Benign Catalyst in the Synthesis of 2-Amino-4H-Chromenes Under Solvent-Free Conditions,” Applied Organometallic Chemistry 32, (2018): 1–10.
  • B. Maleki, “One-pot Synthesis of Some 2-Amino-4H-benzo [g] chromenes,” Organic Preparations and Procedures International 48, (2016): 81–7.
  • B. Maleki, “Green Synthesis of Bis-Coumarin and Dihydropyrano [3, 2-c] Chromene Derivatives Catalyzed by o-Benzenedisulfonimide,” Organic Preparations and Procedures International 48, (2016): 303–18.
  • B. Maleki and A. VedadMofrad, “Efficient Synthesis of Quinazoline Derivatives Catalyzed by Flourinated Alcohol,” Research on Chemical Intermediates 43, (2017): 3111–20.
  • A. Khojastehnezhad, B. Maleki, B. Karrabi, and E. RezaeiSeresht, “Synthesis of Highly Functionalized Piperidines Using Polyphosphoric Acid Supported on Silica-Coated Magnetic Nanoparticles,” Organic Preparations and Procedures International 49, (2017): 338–45.
  • B. Maleki, M. Baghayeri, S. Sheikh, S. Babaee, and S. Farhadi, “One-Pot Synthesis of Some 2-Amino-4H-Chromene Derivatives Using Triethanolamine as a Novel Reusable Organocatalyst Under Solvent-Free Conditions and Its Application in Electrosynthesis of Silver Nanoparticles,” Russian Journal of General Chemistry (Translation of Zhurnal Obshchei Khimii) 87, (2017): 1064–72.
  • R. Tayebee, M. Fattahi Abdizadeh, B. Maleki, and E. Shahri, “Heteropolyacid-Based Ionic Liquid [Simp]3PW12O40 Nanoparticles as a Productive Catalyst for the One-Pot Synthesis of 2H-Indazolo [2, 1-b] Phthalazine-Triones Under Solvent-Free Conditions,” Journal of Molecular Liquids 241, (2017): 447–56.
  • B. Maleki, N. Nasiri, R. Tayebee, A. Khojastehnezhad, and H. A. Akhlaghi, “Green Synthesis of Tetrahydrobenzo [b] Pyrans Pyrano [2, 3-c] Pyrazoles and Spiro [Indoline-3, 4′-Pyrano [2, 3-c] Pyrazoles Catalyzed by Nano-Structured Diphosphate in Water,” RSC Advances 6, (2016): 79128–34.
  • M. Alishahi, F. Mahboubi, S. M. Mousavi Khoie, M. Aparicio, E. Lopez-Elvira, J. Méndez, and R. Gago, “Structural Properties and Corrosion Resistance of Tantalum Nitride Coatings Produced by Reactive DC Magnetron Sputtering,” RSC Advances 6, (2016): 89061–72.
  • S. Mohseni Meybodi, S. A. Hosseini, M. Rezaee, S. K. Sadrnezhaad, and D. Mohammadyani, “Synthesis of Wide Band Gap Nanocrystalline NiO Powder via a Sonochemical Method,” Ultrasonics Sonochemistry 19, (2012): 841–45.
  • Z. Zarnegar, J. Safari, and Z. Mansouri-Kafroudi, “Environmentally Benign Synthesis of Polyhydroquinolines by Co3O4–CNT As An Efficient Heterogeneous Catalyst,” Catalysis Communications 59, (2015): 216–21.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.