129
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Molecular Structure, Spectroscopic, Local and Global Reactivity Descriptors and NBO Analysis of C32H12: A New Buckybowl and Sub-Fullerene Structure

, ORCID Icon &
Pages 693-704 | Received 30 Aug 2016, Accepted 30 Apr 2018, Published online: 24 May 2018

References

  • D. M. Guldi and N. Martin, Carbon nanotubes and related structures: synthesis, characterization, functionalization, and applications (Weinheim: John Wiley & Sons, 2010).
  • T. Akasaka, F. Wudl, and S. Nagase, Chemistry of nanocarbons (Chichester: John Wiley & Sons, 2010).
  • M. Burghard, H. Klauk, and K. Kern, “Carbon-based field-effect transistors for nanoelectronics,” Advanced Materials 21, no. 25–26 (2009): 2586–2600. doi:10.1002/adma.200803582.
  • E. Cauët and D. Jacquemin, “A theoretical spectroscopy investigation of oxosumanenes,” Chemical Physics Letters 519–520, (2012): 49–53. doi:10.1016/j.cplett.2011.11.021.
  • M. D. Clayton and P. W. Rabideau, “Synthesis of a new C32H12 bowl-shaped aromatic hydrocarbon,” Tetrahedron letters 38, no. 5 (1997): 741–744. doi:10.1016/S0040-4039(96)02450-1.
  • W. E. Barth and R. G. Lawton, “Dibenzo [ghi, mno] fluoranthene,” Journal of the American Chemical Society 88, no. 2 (1966): 380–381. doi:10.1021/ja00954a049.
  • H. Sakurai, T. Daiko, and T. Hirao, “A synthesis of sumanene, a fullerene fragment,” Science 301, no. 5641 (2003): 1878–1878. doi:10.1126/science.1088290.
  • L. T. Scott, M. S. Bratcher, and S. Hagen, “Synthesis and characterization of a C36H12 fullerene subunit,” Journal of the American Chemical Society 118, no. 36 (1996): 8743–8744. doi:10.1021/ja9621511.
  • H. Sakurai, T. Daiko, H. Sakane, T. Amaya, and T. Hirao, “Structural elucidation of sumanene and generation of its benzylic anions,” Journal of the American Chemical Society 127, no. 33 (2005): 11580–11581. doi:10.1021/ja0518169.
  • P. W. Rabideau and A. Sygula, “Buckybowls: polynuclear aromatic hydrocarbons related to the buckminsterfullerene surface,” Accounts of Chemical Research 29, no. 5 (1996): 235–242.
  • R. Faust, “Fullerene Model Compounds: Bowl‐Shaped Aromatic Hydrocarbons and Cyclophane‐Based Cage Molecules,” Angewandte Chemie International Edition in English 34, no. 13‐14 (1995): 1429–1432. doi:10.1002/anie.199514291.
  • G. Mehta and H. S. P. Rao, “Synthetic studies related to fullerenes and fullerene fragments,” in Advances in Strain in Organic Chemistry, Volume 6, Ed. B. Halton, Jai Press, UK (1997): 139–187.
  • M. A. Petrukhina and L. T. Scott, “Coordination chemistry of buckybowls: from corannulene to a hemifullerene,” Dalton Transactions, 18 (2005): 2969–2975.
  • L. Scanlon, P. Balbuena, Y. Zhang, G. Sandi, C. Back, W. Feld, J. Mack, M. Rottmayer, and J. Riepenhoff, “Investigation of corannulene for molecular hydrogen storage via computational chemistry and experimentation,” The Journal of Physical Chemistry B 110, no. 15 (2006): 7688–7694. doi:10.1021/jp0574403.
  • A. Reisi-Vanani and S. Mehrdoust, “Effect of boron doping in sumanene frame toward hydrogen physisorption: A theoretical study,” International Journal of Hydrogen Energy 41, no. 34 (2016): 15254–15265.
  • M. Bancu, A. K. Rai, P. Cheng, R. D. Gilardi, and L. T. Scott, “Corannulene polysulfides: Molecular bowls with multiple arms and flaps,” Synlett, no. 1 (2004): 173–176.
  • P. A. Denis, “Theoretical investigation of the stacking interactions between curved conjugated systems and their interaction with fullerenes,” Chemical Physics Letters 516, no. 1–3 (2011): 82–87. doi:10.1016/j.cplett.2011.09.058.
  • C. Corminboeuf, P. W. Fowler, and T. Heine, “13C NMR patterns of C36H2x fullerene hydrides,” Chemical physics letters 361, no. 5–6 (2002): 405–410. doi:10.1016/S0009-2614(02)00986-7.
  • M. Anafcheh and N. L. Hadipour, “A computational NICS and 13C NMR characterization of BN-substituted C60 fullerenes,” Physica E: Low-dimensional Systems and Nanostructures 44, no. 2 (2011): 400–404. doi:10.1016/j.physe.2011.09.005.
  • R. Ditchfield, “Molecular orbital theory of magnetic shielding and magnetic susceptibility,” The Journal of Chemical Physics 56, no. 11 (1972): 5688–5691. doi:10.1063/1.1677088.
  • K. Wolinski, J. F. Hinton, and P. Pulay, “Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations,” Journal of the American Chemical Society 112, no. 23 (1990): 8251–8260. doi:10.1021/ja00179a005.
  • E. Kose, A. Atac, M. Karabacak, P. Nagabalasubramanian, A. Asiri, and S. Periandy, “FT-IR and FT-Raman, NMR and UV spectroscopic investigation and hybrid computational (HF and DFT) analysis on the molecular structure of mesitylene,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 116, (2013): 622–634.
  • M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, J. Montgomery Jr, T. Vreven, K. Kudin, J. Burant, J. Millam, S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M Cossi, G. Scalmani, N. Rega, G. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. Knox, H. Hratchian, J. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. Stratmann, O. Yazyev, A. Austin, R. Cammi, C. Pomelli, J. Ochterski, P. Ayala, K. Morokuma, G. Voth, P. Salvador, J. Dannenberg, V. Zakrzewski, S. Dapprich, A. Daniels, M. Strain, O. Farkas, D. Malick, A. Rabuck, K. Raghavachari, J. Foresman, J. Ortiz, Q. Cui, A. Baboul, S. Clifford, J. Cioslowski, B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Martin, D. Fox, T. Keith, M. Al-Laham, C. Peng, A. Nanayakkara, M. Challacombe, P. Gill, B. Johnson, W. Chen, M. Wong, C. Gonzalez, and J. Pople, Gaussian 03, Revision E. 01 (Wallingford, CT: Gaussian, 2004). Inc.(http://www.gaussian.com)
  • A. Frisch, H. Hratchian, R. Dennington, A. Todd, T. Keith, and J. Millam. GaussView 5. (2009).
  • E. Glendening, J. Badenhoop, A. Reed, J. Carpenter, J. Bohmann, C. Morales, and F. Weinhold, NBO, version 5.0 (Madison, WI: Theoretical Chemistry Institute, University of Wisconsin, 2001).
  • R. Pearson, Chemical Hardness–Applications from Molecules to Solids, VCH. in (Weinheim: Wiley, 1997).
  • P. Geerlings, F. De Proft, and W. Langenaeker, “Conceptual density functional theory,” Chemical Reviews 103, no. 5 (2003): 1793–1874. doi:10.1021/cr990029p.
  • P. K. Chattaraj and D. R. Roy, “Update 1 of: electrophilicity index,” Chemical Reviews 107, no. 9 (2007): PR46–PR74. doi:10.1021/cr078014b.
  • R. G. Parr, L. V. Szentpaly, and S. Liu, “Electrophilicity index,” Journal of the American Chemical Society 121, no. 9 (1999): 1922–1924.
  • P. K. Chattaraj, U. Sarkar, and D. R. Roy, “Electrophilicity index,” Chemical reviews 106, no. 6 (2006): 2065–2091. doi:10.1021/cr040109f.
  • K. Fukui, “The role of frontier orbitals in chemical reactions,” Physiology or medicine literature peace economic sciences 9–27, (1992).
  • P. W. Ayers and M. Levy, “Perspective on Density functional approach to the frontier-electron theory of chemical reactivity,” Theoretical Chemistry Accounts 103, no. 3–4 (2000): 353–360. doi:10.1007/s002149900093.
  • R. G. Parr and W. Yang, “Density functional approach to the frontier-electron theory of chemical reactivity,” Journal of the American Chemical Society 106, no. 14 (1984): 4049–4050.
  • W. Yang and W. J. Mortier, “The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines,” Journal of the American Chemical Society 108, no. 19 (1986): 5708–5711. doi:10.1021/ja00279a008.
  • R. Parthasarathi, J. Padmanabhan, V. Subramanian, B. Maiti, and P. Chattaraj, “Chemical reactivity profiles of two selected polychlorinated biphenyls,” The Journal of Physical Chemistry A 107, no. 48 (2003): 10346–10352.
  • R. Parthasarathi, J. Padmanabhan, V. Subramanian, B. Maiti, and P. Chattaraj, “Toxicity analysis of 33′44′5-pentachloro biphenyl through chemical reactivity and selectivity profiles,” Current Science 86, no. 4 (2004): 535–542.
  • J. Padmanabhan, R. Parthasarathi, V. Subramanian, and P. Chattaraj, “Group philicity and electrophilicity as possible descriptors for modeling ecotoxicity applied to chlorophenols,” Chemical research in toxicology 19, no. 3 (2006): 356–364.
  • J. Padmanabhan, R. Parthasarathi, M. Elango, V. Subramanian, B. Krishnamoorthy, S. Gutierrez-Oliva, A. Toro-Labbé, D. Roy, and P. Chattaraj, “Multiphilic descriptor for chemical reactivity and selectivity,” The Journal of Physical Chemistry A 111, no. 37 (2007): 9130–9138.
  • K. Fukui, T. Yonezawa, and H. Shingu, “A molecular orbital theory of reactivity in aromatic hydrocarbons,” The Journal of Chemical Physics 20, no. 4 (1952): 722–725. doi:10.1063/1.1700523.
  • L. Padmaja, C. Ravikumar, D. Sajan, I. Hubert Joe, V. Jayakumar, G. Pettit, and O. Faurskov Nielsen, “Density functional study on the structural conformations and intramolecular charge transfer from the vibrational spectra of the anticancer drug combretastatin‐A2,” Journal of Raman Spectroscopy 40, no. 4 (2009): 419–428.
  • S. Sagdinc and H. Pir, “Spectroscopic and DFT studies of flurbiprofen as dimer and its Cu (II) and Hg (II) complexes,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 73, no. 1 (2009): 181–194. doi:10.1016/j.saa.2009.02.022.
  • T. Koopmans, “Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms,” Physica 1, no. 1–6 (1934): 104–113.
  • R. G. Pearson, “Absolute electronegativity and hardness: applications to organic chemistry,” The Journal of Organic Chemistry 54, no. 6 (1989): 1423–1430.
  • R. J. Xavier and E. Gobinath, “FT-IR, FT-Raman, ab initio and DFT studies, HOMO–LUMO and NBO analysis of 3-amino-5-mercapto-1, 2, 4-triazole,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 86, (2012): 242–251. doi:10.1016/j.saa.2011.10.031.
  • G. Keresztury, S. Holly, G. Besenyei, J. Varga, A. Wang, and J. Durig, “Vibrational spectra of monothiocarbamates-II. IR and Raman spectra, vibrational assignment, conformational analysis and ab initio calculations of S-methyl-N, N-dimethylthiocarbamate,” Spectrochimica Acta Part A: Molecular Spectroscopy 49, no. 13 (1993): 2007–2026.
  • P. Polavarapu, “Ab initio vibrational Raman and Raman optical activity spectra,” Journal of Physical Chemistry 94, no. 21 (1990): 8106–8112.
  • R. McWeeny, “Perturbation theory for the Fock-Dirac density matrix,” Physical Review 126, no. 3 (1962): 1028.
  • N. Subramanian, N. Sundaraganesan, and J. Jayabharathi, “Molecular structure, spectroscopic (FT-IR, FT-Raman, NMR, UV) studies and first-order molecular hyperpolarizabilities of 1, 2-bis (3-methoxy-4-hydroxybenzylidene) hydrazine by density functional method,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 76, no. 2 (2010): 259–269. doi:10.1016/j.saa.2010.03.033.
  • M. Snehalatha, C. Ravikumar, I. H. Joe, N. Sekar, and V. Jayakumar, “Spectroscopic analysis and DFT calculations of a food additive Carmoisine,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 72, no. 3 (2009): 654–662. doi:10.1016/j.saa.2008.11.017.
  • M. Szafran, A. Komasa, and E. Bartoszak-Adamska, “Crystal and molecular structure of 4-carboxypiperidinium chloride (4-piperidinecarboxylic acid hydrochloride),” Journal of Molecular Structure 827, no. 1 (2007): 101–107. doi:10.1016/j.molstruc.2006.05.012.
  • T. J. Seiders, K. K. Baldridge, G. H. Grube, and J. S. Siegel, “Structure/Energy Correlation of Bowl Depth and Inversion Barrier in Corannulene Derivatives:  Combined Experimental and Quantum Mechanical Analysis,” Journal of the American Chemical Society 123, no. 4 (2001): 517–525. doi:10.1021/ja0019981.
  • U. D. Priyakumar and G. N. Sastry, “First ab initio and density functional study on the structure, bowl-to-bowl inversion barrier, and vibrational spectra of the elusive C3v-Symmetric Buckybowl: Sumanene, C21H12,” The Journal of Physical Chemistry A 105, no. 18 (2001): 4488–4494.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.