84
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Nano-Mn-[3-Nitrophenyl-Salicylaldimine-Methyl Pyranopyrazole] Cl2 as a New Schiff Base Complex and Catalyst

, &
Pages 862-874 | Received 06 Mar 2017, Accepted 20 Jul 2018, Published online: 24 Jan 2019

References

  • J. Zhu and H. Bienayme, editors, Multicomponent Reactions (Weinheim: Wiley, 2005).
  • A. Khazaei, M. A. Zolfigol, A. R. Moosavi-Zare, F. Abi, A. Zare, H. Kaveh, V. Khakyzadeh, M. Kazem-Rostami, A. Parhami, and H. Torabi-Monfared, “Discovery of an In Situ Carbocationic System Using Trityl Chloride as a Homogeneous Organocatalyst for the Solvent-Free Condensation of b-naphthol with Aldehydes and Amides/Thioamides/Alkyl Carbamates in Neutral Media,” Tetrahedron 69 (2013): 212.
  • A. R. Moosavi-Zare, M. A. Zolfigol, S. Farahmand, A. Zare, A. R. Pourali, and R. Ayazi-Nasrabadi, “Synthesis of 2,4,6-Triarylpyridines Using ZrOCl2 under Solvent-free Conditions,” Synlett 25 (2014): 193.
  • M. A. Zolfigol, A. Khazaei, A. R. Moosavi-Zare, A. Zare, and V. Khakyzadeh, “Rapid Synthesis of 1-Amidoalkyl-2-naphthols over Sulfonic Acid Functionalized Imidazolium Salts,” Applied Catalysis A: General 400 (2011): 70.
  • A. R. Moosavi-Zare, M. A. Zolfigol, and M. Daraei, “Solvent-free Condensation of Phenols with Aldehydes and Amides Using 3-Methyl-1-sulfonic Acid Imidazolium Chloride,” Synlett 25 (2014): 1173.
  • A. R. Moosavi-Zare, M. A. Zolfigol, and Z. Rezanejad, “Trityl Chloride Promoted the Synthesis of 3-(2,6-diarylpyridin-4-yl)-1H-indoles and 2,4,6-Triarylpyridines by In Situ Generation of Trityl Carbocation and Anomeric Based Oxidation in Neutral Media,” Canadian Journal of Chemistry 94 (2016): 626.
  • A. R. Moosavi-Zare, M. A. Zolfigol, R. Salehi-Moratab, and E. Noroozizadeh, “Catalytic Application of 1-(Carboxymethyl)Pyridinium Iodide on the synthesis OF Pyranopyrazole Derivatives,” Journal of Molecular Catalysis A: Chemistry 415 (2016): 144.
  • (a) A. R. Moosavi-Zare, M. A. Zolfigol, O. Khaledian, V. Khakyzadeh, M. D. Farahani, and H. G. Kruger, “Tandem Knoevenagel–Michael-cyclocondensation Reactions of Malononitrile, Various Aldehydes and Dimedone Using Acetic Acid Functionalized Ionic Liquid,” New Journal of Chemistry 38 (2014): 2342; (b) A. R. Moosavi-Zare, M. A. Zolfigol, F. Derakhshan-Panah, and S. Balalaie, “Synthesis and Characterization of 4,4-Bipyridinium Sulfonic Acid Chloride as a New and Efficient Catalyst for the Preparation of Amidoalkyl Phenols and Bis Amidoalkyl Phenols,” Molecular Catalysis 449 (2018): 142.
  • B. Sreenivasulu, Schiff Base and Reduced Schiff Base Ligands (Chichester, UK: John Wiley & Sons, Ltd, 2012).
  • S. R. Collinson and D. E. Fenton, “Metal complexes of Bibracchial Schiff Base Macrocycles,” Coordination Chemistry Reviews 148 (1996): 19.
  • D. E. Fenton and P. A. Vigato, “Macrocyclic Schiff Base Complexes of Lanthanides and Actinides,”  Chemistry Society Reviews 17 (1988): 69.
  • P. Zanello, S. Tamburini, P. A. Vigato, and G. A. Mazzocchin, “Syntheses, Structure and Electrochemical Characterization of Homo- and Heterodinuclear Copper Complexes with Compartmental Ligands,” Coordination Chemistry Reviews 77 (1987): 165.
  • A. Mederos, S. Domı́nguez, R. Hernández-Molina, J. Sanchiz, and F. Brito, “Coordinating Ability of Ligands Derived from Phenylenediamines,” Coordination Chemistry Reviews 193 (1999): 857.
  • J. Costamagna, J. Vargas, R. Latorre, A. Alvarado, and G. Mena, “Coordination compounds of copper, nickel and iron with Schiff bases derived from hydroxynaphthaldehydes and salicylaldehydes,” Coordination Chemistry Reviews 119 (1992): 67.
  • M. M. Aly, Journal of Coordination Chemistry 98 (1998): 89.
  • S. A. Laufer, W. Zimmermann, and K. J. Ruff, “Tetrasubstituted Imidazole Inhibitors of Cytokine Release: Probing Substituents in the N-1 Position,” Journal of Medicinal Chemistry 47 (2004): 6311.
  • S. E. Wolkenberg, D. D. Wisnoski, W. H. Leister, Y. Wang, Z. Zhao, and C. W. Lindsley, “Efficient Synthesis of Imidazoles from Aldehydes and 1,2-Diketones Using Microwave Irradiation” Organic Letters 6 (2004): 1453.
  • M. M. Heravi, F. Derikv, and M. Haghighi, “Highly Efficient, Four Component, One-Pot Synthesis of Tetrasubstituted Imidazoles Using a Catalytic Amount of FeCl3 · 6H2O” Monatshefte fur Chemie 139 (2008): 31.
  • M. M. Heravi, F. Derikvand, and F. F. Bamoharram, “Highly Efficient, Four-Component One-Pot Synthesis of Tetrasubstituted Imidazoles Using Keggin-Type Heteropolyacids as Green and Reusable Catalysts” Journal of Molecular Catalysis A: Chemistry 263 (2007): 112.
  • S. Balalaie and A. Arabanian, “One-Pot Synthesis of Tetrasubstituted Imidazoles Catalyzed by Zeolite HY and Silica Gel under Microwave Irradiation” Green Chemistry 2 (2000): 274.
  • A. Y. Usyatinsky and Y. L. Khmelnitsky, “Microwave-Assisted Synthesis of Substituted Imidazoles on a Solid Support under Solvent-Free Conditions” Tetrahedron Letters 41 (2000): 5031.
  • S. Kantevari, S. V. N. Vuppalapati, D. O. Biradar, and L. Nagarapu, “Highly Efficient, One-Pot, Solvent-Free Synthesis of Tetrasubstituted Imidazoles using HClO4–SiO2 as Novel Heterogeneous Catalyst” Journal of Molecular Catalysis A: Chemistry 266 (2007): 109.
  • M. Kidwai, P. Mothsra, V. Bansal, R. K. Somvanshi, A. S. Ethayathulla, S. Dey, and T. P. Singh, “One-Pot Synthesis of Highly Substituted Imidazoles Using Molecular Iodine: A Versatile Catalyst” Journal of Molecular Catalysis A: Chemistry 265 (2007): 177.
  • B. Sadeghi, B. B. F. Mirjalili, and M. M. Hashemi, “BF3·SiO2: An Efficient Reagent System for the One-Pot Synthesis of 1,2,4,5-Tetrasubstituted Imidazoles” Tetrahedron Letters 49 (2008): 2575.
  • S. D. Sharma, P. Hazarika and D. Konwar, “An Efficient and One-Pot Synthesis of 2,4,5-Trisubstituted and 1,2,4,5-Tetrasubstituted Imidazoles Catalyzed by InCl3·3H2O” Tetrahedron Letters 49 (2008): 2216.
  • L. Nagarapu, S. Apuri, and S. Kantevari, “Potassium Dodecatugstocobaltate Trihydrate (K5CoW12O40·3H2O): A Mild and Efficient Reusable Catalyst for the One-Pot Synthesis of 1,2,4,5-Tetrasubstituted Imidazoles under Conventional Heating and Microwave Irradiation,” Journal of Molecular Catalysis A: Chemistry 266 (2007): 104.
  • B. H. Lipshutz and M. C. Morey, “An Approach to the Cyclopeptide Alkaloids (Phencyclopeptines) via Heterocyclic Diamide/Dipeptide Equivalents. Preparation and N-Alkylation Studies of 2,4(5)-Disubstituted Imidazoles” Journal of Organic Chemistry 48 (1983): 3745.
  • M. R. Mohammadizadeh, A. Hasaninejad, and M. Bahramzadeh, “Trifluoroacetic Acid as an Efficient Catalyst for One-Pot, Four-Component Synthesis of 1,2,4,5-Tetrasubstituted Imidazoles Under Microwave-Assisted, Solvent-Free Conditions” Synthetic Communication 39 (2009): 3232.
  • M. A. Zolfigol, Ardeshir Khazaei, Ahmad R. Moosavi-Zare, Abdolkarim Zare, Z. Asgari, Vahid Khakyzadeh, and A. Hasaninejad, “Design of Ionic Liquid 1,3-Disulfonic Acid Imidazolium Hydrogen Sulfate as a Dual-Catalyst for the One-Pot Multi-Component Synthesis of 1,2,4,5-Tetrasubstituted Imidazoles” Journal of Industrial and Engineering Chemistry 19 (2013): 721.
  • A. R. Moosavi-Zare, Z. Asgari, A. Zare, M. A. Zolfigol, and M. Shekouhy, “One Pot Synthesis of 1,2,4,5-Tetrasubstitutedimidazoles Catalyzed by Trityl Chloride in Neutral Media” RSC Advances, 4 (2014): 60636.
  • A. Khazaei, A. R. Moosavi-Zare, F. Gholami, and V. Khakyzadeh “Preparation of 1,2,4,5-Tetrasubstituted Imidazoles over Magnetic Core–Shell Titanium Dioxide Nanoparticles” Applied Organometallic Chemistry 30 (2016): 691.
  • M. A. Zolfigol, S. Baghery, A. R. Moosavi-Zare, and S. M. Vahdat, “Synthesis of 1,2,4,5-Tetrasubstituted Imidazoles using 2,6-Dimethylpyridinium Trinitromethanide{[2,6-DMPyH]C(NO2)3} as a Novel Nanostructured Molten Salt and Green Catalyst” RSC Advances, 5 (2015): 32933.
  • B. F. Mirjalili, A. Bamoniri, M. A. K. Zarchi, and F. Pouramini, “P2O5.SiO2: An Efficient Catalyst for the One-Pot Synthesis of 1,2,4,5-Tetrasubstituted Imidazoles” Optoelectronics and Advanced Materials-Rapid Communications 4 (2010): 1384.
  • A. R. Moosavi-Zare, Z. Asgari, A. Zare, and M. A. Zolfigol, “One-Pot Multi-Component Synthesis of 1,2,4,5-Tetrasubstituted Imidazoles using Sulfonic Acid-Functionalized Pyridinium Chloride as an Efficient and Recyclable Catalyst” Scientia Iranica C 22 (2015): 2254.
  • H. R. Shaterian, M. Ranjbar, and K. Azizi, Chinese Journal of Chemistry 29 (2011): 1635.
  • A. Bamoniri, B. F. Mirjalili, and S. Nazemian, JNS 2 (2012): 101.
  • M. Vosoughi, F. Mohebal, A. P. S. Bonakdar, H. A. Lordegani, and A. R. Massah, Bulgarian Chemical Communications 47 (2015): 607.
  • B.F. Mirjalili, A.H. Bamoniri, and L. Zamani, “One-Pot Synthesis of 1,2,4,5-Tetrasubstituted Imidazoles Promoted by Nano-TiCl4.SiO2” Scientia Iranica C 19 (2012): 565.
  • S.J. Saghanezhad and A. R. Kiasat, “One-Pot Preparation of 2,4,5-Trisubstituted and 1,2,4,5-Tetrasubstituted Imidazoles Using Poly(4-vinylpyridinium Butane Sulfonic Acid) Hydrogen Sulfate, as an Efficient Heterogeneous Poly(ionic Liquid) Solid Acid Catalyst under Solvent-free Conditions” Organic Chemistry Research 2 (2016): 57.
  • K. Vikrant, M. Ritu, and S. Neha “Synthesis of Substituted Imidazoles via a Multi-Component Condensation Catalyzed by p-Toluene Sulfonic Acid, PTSA” Research Journal of Chemical Sciences 2 (2012): 18.
  • B. Karami, F. M. Dehghani, and K. Eskandari “Facile and Rapid Synthesis of Polysubstituted Imidazoles by Employing Y(NO3)3 × 6H2O as Catalyst” Croatica Chemica Acta 85 (2012): 147.
  • R. Hekmatshoar, M. Kargar, A. Mostashari, Z. Hashemi, F. Goli, and F. Mousavizadeh, “A Practical and Highly Efficient Synthesis of 1,2,4,5- Tetrasubstituted Imidazoles Using 2-Ethylhexanoic Acid as a Reusable Organocatalyst and Reaction Medium” Gazi University of Journal of Science 28 (2015): 21.
  • A. P. G. Nikalje, M. S. Ghodke, F. A. K. Khan, and J. N. Sangshetti, “CAN Catalyzed One-Pot Synthesis and Docking Study of Some Novel Substituted Imidazole Coupled 1,2,4-Triazole-5-Carboxylic Acids as Antifungal Agents” Chinese Chemical Letters 26 (2015): 108.
  • A. Hasaninejad, A. Zare, M. Shekouhy, and J. Ameri Rad, “Catalyst-Free One-Pot Four Component Synthesis of Poly substituted Imidazoles in Neutral Ionic Liquid 1-Butyl-3-methylimidazolium Bromide”. Journal of Combinatorial Chemistry 12 (2010): 844.
  • M. A. Zolfigol, M. Tavasoli, A. R. Moosavi-Zare, P. Moosavi, H. G. Kruger, M. Shiri, and Vahid Khakyzadeh, “Synthesis of Pyranopyrazoles using Isonicotinic Acid as a Dual and Biological Organocatalyst” RSC Advances 3 (2013): 25681.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.