235
Views
1
CrossRef citations to date
0
Altmetric
Articles

Glacial Acetic Acid-Assisted One-Pot Synthesis of Diverse Octahydroacridin-4-Methylbenzenesulfonamides via Tandem Cascade Reactions

, , &
Pages 1045-1058 | Received 03 Apr 2018, Accepted 06 Sep 2018, Published online: 29 Oct 2018

References

  • S. K. Singh and K. N. Singh, “DBU-Catalyzed Expeditious and Facile Multicomponent Synthesis of N-arylquinolines under Microwave Irradiation,” Monatshefte für Chemie 143 (2012): 805–80. doi:10.1007/s00706-011-0651-y.
  • G. Renzi, A. Scozzafava, and C. T. Supuran, “Carbonic Anhydrase Inhibitors: ‘Topical Sulfonamide Antiglaucoma Agents Incorporating Secondary Amine Moieties,” Bioorganic & Medicinal Chemistry 10 (2000): 673–76. doi:10.1016/S0960-894X(00)00075-5.
  • J. J. Li, G. D. Anderson, E. G. Burton, J. N. Cogburn, J. T. Collins, D. J. Garland, S. A. Gregory, H. C. Huang, P. C. Isakson, C. M. Koboldt, et al., “1,2-Diarylcyclopentenes as Selective Cyclooxygenase-2 Inhibitors and Orally Active Anti-inflammatory Agents,” Journal of Medicinal Chemistry 38 (1995): 4570–8. doi:10.1021/jm00022a023.
  • H. Yoshino, N. Ueda, J. Niijima, H. Sugumi, Y. Kotake, N. Koyanagi, K. Yoshimatsu, M. Asada, T. Watanabe, T. Nagasu, et al., “Novel Sulfonamides as Potential, Systemically Active Antitumor Agents,” Journal of Medicinal Chemistry 35 (1992): 2496–7. doi:10.1021/jm00091a018.
  • N. Mahaboob Basha, G. Lavanya, A. Padmaja, and V. Padmavathi, “Activities of Acetamidomethylsulfonyl Bis Heterocycles Oxazolyl/Thiazolyl/Imidazolyl-1,3,4-oxadiazoles,” ARCHPHARM Chemistry in Life Science 346 (2013): 511–20. doi.org/10.1002/ardp.201300115.
  • A. K. Ghose, V. N. Viswanadhan, and J. J. Wendoloski, “A Knowledge-Based Approach in Designing Combinatorial or Medicinal Chemistry Libraries for Drug Discovery. 1. A Qualitative and Quantitative Characterization of Known Drug Database,” ACS Combinatorial Chemistry 1 (1999): 55–68. doi: 10.1021/cc9800071.
  • G. Sartori and R. Maggi, “Protection (and Deprotection) of Functional Groups in Organic Synthesis by Heterogeneous Catalysis,” Chemical Reviews 113 (2010): PR1–PR54. doi: 10.1021/cr0200769.
  • D. P. Jindal, V. Bedi, B. Jit, N. Karkra, S. Guleria, R. Bansal, A. Palusczak, and R. W. Hartmann, “Synthesis and Study of Some New N-Substituted Imide Derivatives as Potential Anticancer Agents,” II Farmaco 60 (2005): 283–90. doi:10.1016/j.farmac.2005.01.011.
  • I. R. Ezabadi, C. Camoutsis, P. Zoumpoulakis, A. Geronikaki, M. Soković, J. Glamočilija, and A. Ćirić, “Sulfonamide-1,2,4-triazole Derivatives as Antifungal and Antibacterial Agents: Synthesis, Biological Evaluation, Lipophilicity, and Conformational Studies,” Bioorganic & Medicinal Chemistry 16 (2008): 1150–61. doi:10.1016/j.bmc.2007.10.082.
  • W. R. Roush, J. Cheng, B. Knapp-Reed, A. Alvarez-Hernandez, J. H. McKerrow, E. Hansell, and J. C. Engel, “Potent Second Generation Vinyl Sulfonamide Inhibitors of the Trypanosomal Cysteine Protease Cruzain,” Bioorganic & Medicinal Chemistry Letters 11 (2001): 2759–62. doi:10.1016/S0960-894X(01)00566-2.
  • A. K. Gadad, C. S. Mahajanshetti, S Nimbalkar, and A. Raichurkar, “Synthesis and Antibacterial Activity of Some 5-Guanylhydrazone/Thiocyanato-6-arylimidazo[2,1-b]-1,3,4-Thiadiazole-2-Sulfonamide Derivatives,” European Journal of Medicinal Chemistry 35 (2000): 853–7. doi:10.1016/S0223-5234(00)00166-5.
  • F. Zani and P. Vicini, “Antimicrobial Activity of Some 1,2-Benzisothiazoles having a Benzenesulfonamide Moiety,” ARCHPHARM. Chemistry in Life Science 331 (1998): 219–23. doi:10.1002/(SICI)1521-4184(199806)331:6 < 219::AID-ARDP219 > 3.0.CO;2-U
  • T. H. Maren, “Relation Between Structure and Biological Activity of Sulfonamides,” Annual Review of Pharmacology and Toxicology 16 (1976): 309–27. doi:10.1146/annurev.pa.16.040176.001521.
  • D. Singh and G. Bansal, “Synthesis of Morpholine Containing Sulfonamides: Introduction of Morpholine Moiety on Amine Functional Group,” E-Journal of Chemistry 1 (2004): 164–9.
  • I. G. Rathish, K. Javed, S. Ahmad, S. Bano, M. S. Alam, M. Akhter, K. K. Pillai, S. Ovais, and M. Samim, “Synthesis and Evaluation of Anticancer Activity of Some Novel 6-Aryl-2-(p-Sulfamylphenyl)-Pyridazin-3(2h)-Ones,” European Journal of Medicinal Chemistry 49 (2012): 304–9. doi:10.1016/j.ejmech.2012.01.026.
  • A. J. Kivela, J. Kivela, J. Saarnio, and S. Parkkila, “Carbonic Anhydrases in Normal Gastrointestinal Tract and Gastrointestinal Tumours,” World Journal Gastroenterology 11 (2005): 155–63. doi:10.3748/wjg.v11.i2.155.
  • D. D. Subhedar, M. H. Shaikh, F. A. Kalam Khan, J. N. Sangshetti, V. M. Khedkar, and B. B. Shingate, “Facile Synthesis of New n-Sulfonamidyl-4-thiazolidinone Derivatives and their Biological Evaluation,” New Journal of Chemistry 40 (2016): 3047–58. doi:10.1039/C6NJ00021E.
  • S. Bano, K. Javed, S. Ahmad, I. G. Rathish, S. Singh, and M. S. Alam, “Synthesis and Biological Evaluation of Some New 2-Pyrazolines Bearing Benzene Sulfonamide Moiety as Potential Anti-Inflammatory and Anti-Cancer Agents,” European Journal of Medicinal Chemistry 46 (2011): 5763–8. doi:10.1016/j.ejmech.2011.08.015.
  • R. Bashir, S. Ovais, S. Yaseen, H. Hamid, M. S. Alam, M. Samim, S. Singh, and K. B. Javed, “Synthesis of Some New 1,3,5-Trisubstituted Pyrazolines Bearing Benzene Sulfonamide as Anticancer and Anti-Inflammatory Agents,” Bioorganic & Medicinal Chemistry Letters 21 (2011): 4301–5. doi:10.1016/j.bmcl.2011.05.061.
  • Y. Baquedano, E. Moreno, S. Espuelas, P. Nguewa, M. Font, K. J. Gutierrez, A. Jiménez-Ruiz, J. A. Palop, and C. Sanmartín, “Novel Hybrid Selenosulfonamides as Potent Antileishmanial Agents,” European Journal of Medicinal Chemistry 74 (2014): 116–23. doi:10.1016/j.ejmech.2013.12.030.
  • P. Forgacs, N. L. Wengenack, L. Hall, S. K. Zimmerman, M. L. Silverman, and G. D. Roberts, “Tuberculosis and Trimethoprim-Sulfamethoxazole,” Antimicrobial Agents and Chemotherapy 53 (2009): 4789–93. doi:10.1128/AAC.01658-08.
  • L. Y. Zhang, F. Yang, W. Q. Shi, P. Zhang, Y. Li, and S. F. Yin, “Synthesis and Antigastric Ulcer Activity of Novel 5-Isoproyl-3,8-dimethylazulene Derivatives,” Bioorganic & Medicinal Chemistry Letters 21 (2011): 5722–5. doi:10.1016/j.bmcl.2011.08.018.
  • Y. Luo, K. M. Qiu, X. Lu, K. Liu, J. Fu, and H. L. Zhu, “Synthesis, Biological Evaluation, and Molecular Modeling of Cinnamic Acyl Sulfonamide Derivatives as Novel Antitubulin Agents,” Bioorganic & Medicinal Chemistry 19 (2011): 4730–8. doi:10.1016/j.bmc.2011.06.088.
  • A. Saeed, S. Zaib, A. Pervez, A. Mumtaz, M. Shahid, and J. Iqbal, “Synthesis, Molecular Docking Studies, and in Vitro Screening of Sulfanilamide-thiourea Hybrids as Antimicrobial and Urease Inhibitors,” Medicinal Chemistry Research 22 (2013): 3653–62. doi.10.1007/s00044-012-0376-4.
  • M. Krátký, J. Vinšová, M. Volková, V. Buchta, F. Trejtnar, and J. Stolaříková, “Antimicrobial Activity of Sulfonamides Containing 5-Chloro-2-Hydroxybenzaldehyde and 5-Chloro-2-Hydroxybenzoic Acid Scaffold,” European Journal of Medicinal Chemistry 50 (2012): 433–40. doi:10.1016/j.ejmech.2012.01.060.
  • V. Patil, M. Kale, A. Raichurkar, B. Bhaskar, D. Prahlad, M. Balganesh, S. Nandan, and P. Shahul Hameed, “Design and Synthesis of Triazolopyrimidine Acylsulfonamides as Novel Anti-mycobacterial Leads Acting Through Inhibition of Acetohydroxyacid Synthase,” Bioorganic & Medicinal Chemistry Letters 24 (2014): 2222–5. doi:10.1016/j.bmcl.2014.02.054.
  • M. A. Gouda, H. E. Gafer, and M. Gouda, “Synthesis and Anti-hypertensive Activity of Novel Sulphadimidine Derivatives,” Medicinal Chemistry Research 21 (2012): 3902–6. doi:10.1007/s00044-011-9935-3.
  • C. T. Supuran, A. Scozzafava, B. C. Jurca, and M. A. Ilies, “Carbonic Anhydrase Inhibitors - Part 49: Synthesis of Substituted Ureido and Thioureido Derivatives of Aromatic/Heterocyclic Sulfonamides with Increased Affinities for Isozyme I,” European Journal of Medicinal Chemistry 33 (1998): 83–93. doi:10.1016/S0223-5234(98)80033-0.
  • G. Renzi, A. Scozzafava, and C. T. Supuran, “Carbonic Anhydrase Inhibitors: Topical Sulfonamide Antiglaucoma Agents Incorporating Secondary Amine Moieties,” Bioorganic & Medicinal Chemistry Letters 10 (2000): 673–6. doi:10.1016/S0960-894X(00)00075-5.
  • H. R. Chobanian, Y. Guo, P. Liu, T. J. Lanza Jr., M. Chioda, L. Chang, T. M. Kelly, Y. Kan, O. Palyha, X. M. Guan, et al., “Discovery of Mk-7725, A Potent, Selective Bombesin Receptor Subtype-3 Agonist for the Treatment of Obesity,” ACS Medicinal Chemistry Letters 20 (2012): 252–6. doi:10.1021/ml200304j.
  • C. O. Kappe, “High-speed Combinatorial Synthesis Utilizing Microwave Irradiation,” Current Opinion in Chemical Biology 6 (2002): 314–20. doi:10.1016/S1367-5931(02)00306-X.
  • V. Nair, C. Rajesh, A. U. Vinod, S. Bindu, A. R. Sreekanth, J. S. Mathen, and L. Balagopal, “Strategies for Heterocyclic Construction via Novel Multicomponent Reactions Based on Isocyanides and Nucleophilic Carbenes,” Accounts of Chemical Research 36 (2003): 899–907. doi:10.1021/ar020258p.
  • D. J. Ramon and M. Yus, “Asymmetric Multicomponent Reactions (AMCRs): The New Frontier,” Angewandte Chemie International Edition 44 (2005): 1602–34. doi:10.1002/anie.200460548.
  • A. Domling, “Recent Developments in Isocyanide Based Multicomponent Reactions in Applied Chemistry,” Chemical Reviews 106 (2006): 17–89. doi: 10.1021/cr0505728.
  • A. Studer, P. Jeger, P. Wipf, and D. P. Curran, “Fluorous Synthesis: Fluorous Protocols for the Ugi and Biginelli Multicomponent Condensations,” The Journal of Organic Chemistry 62 (1997): 2917–24. doi:10.1021/jo970095w.
  • N. O. Mahmoodi, S. Ramzanpour, and F. G. Pirbasti, “One‐pot Multi‐Component Synthesis of 1,4‐Dihydropyridines Using Zn2+@KSF and Evaluating their Antibacterial and Antioxidant Activities,” ARCHPHARM. Chemistry in Life Science 348 (2015): 275–82. doi:10.1002/ardp.201400414.
  • R. Rezaei, R. Khalifeh, M. Rajabzadeh, L. Dorosty, and M. M. Doroodmand, “Melamine-formaldehyde Resin Supported H+-Catalyzed Three-component Synthesis of 1,8-Dioxo-decahydroacridine Derivatives in Water and Under Solvent-free Conditions,” Heterocyclic Communication 19, no. 1 (2013): 57–63. doi:10.1515/hc-2012-0053.
  • G. P. Hua, X. J. Zhang, F. Shi, S. J. Tu, J. N. Xu, Q. Wang, X. T. Zhu, J. P. Zhang, an S. J. Ji, “One-pot Synthesis of 10-Methyl-1,2,3,4,5,6,7,8,9,10-decahydroacridine-1,8-dione Derivatives under Microwave Heating Without Catalyst,” Chinese Journal of Chemistry 23 (2005): 1646–50. doi:10.1002/cjoc.200591646.
  • N. Martin, M. Quinteiro, C. Seoane, J. L. Soto, A. Mora, S. M. Uarez A. Morales, E. Ochoa, and J. D. Bosque, “Synthesis and Conformational Study of Acridine Derivatives Related to 1,4‐Dihydropyridines,” Journal of Heterocyclic Chemistry 32 (1995): 235–8. doi:10.1002/jhet.5570320139.
  • M. Kidwai and D. Bhatnagar, “Ceric ammonium nitrate (CAN) Catalyzed Synthesis of N-substituted Decahydroacridine-1,8-diones in PEG.” Tetrahedron Letters 51 (2010): 2700–03. doi:10.1016/j.tetlet.2010.03.033.
  • T. S. Jin, J. S. Zhang, T. T. Guo, A. Q. Wang, and T. S. Li, “One-Pot Clean Synthesis of 1,8-Dioxo-decahydroacridines Catalyzed by p-Dodecylbenezenesulfonic Acid in Aqueous Media,” Synthesis 12 (2004): 2001–5. doi:10.1055/s-2004-829151.
  • K. Venkatesan, S. S. Pujari, and K. V. Srinivasan, “Proline-Catalyzed Simple and Efficient Synthesis of 1,8-Dioxo-decahydroacridines in Aqueous Ethanol Medium,” Synthetic Communications 39 (2009): 228–41. doi:10.1080/00397910802044306.
  • B. Das, P. Thirupathi, I. Mahender, V. S. Reddy, and Y. K. Rao, “Amberlyst-15: An Efficient Reusable Heterogeneous Catalyst for the Synthesis of 1,8-Dioxo-octahydroxanthenes and 1,8-Dioxo-decahydroacridines,” Journal of Molecular Catalysis A:Chemical 247 (2006): 233–9. doi: 10.1016/j.molcata.2005.11.048.
  • D.-Q. Shi, S.-N. Ni, F.-Yang, J.-W. Shi, G.-L. Dou, X.-Y. Li, and X.-S. Wang, “An Efficient Synthesis of Polyhydroacridine Derivatives by the Three-component Reaction of Aldehydes, Amines and Dimedone in Ionic Liquid,” Journal of Heterocyclic Chemistry 45 (2008): 653–60. doi:10.1002/jhet.5570450303.
  • E. Rajanarendar, M. Nagi Reddy, and F. Pasha Shaik, “An Efficient One-pot Three Component Synthesis of Isoxazoly Polyhydroacridine-1,8-diones in Ionic Liquid Medium,” Indian Journal of Chemistry-Section B 50B (2011): 245–52.
  • S. S. Mansoor, K. Aswin, K. Logaiya, and S. P. N. Sudhan, “Aqua-mediated Synthesis of Acridinediones with Reusable Silica-supported Sulfuric Acid as an Efficient Catalyst,” Journal of Taibah University for Science 8 (2014): 265–75. doi:10.1016/j.jtusci.2014.03.003.
  • C. S. Maheswari, R. Ramesh, and A. Lalitha, “One-pot Synthesis of Symmetrical and Unsymmetrical Acridine Sulfonamide Derivatives Catalyzed by p-TSA,” Research on Chemical Intermediates 42 (2016): 7625–36. doi: 10.1007/s11164-017-2870-2.
  • K. Parameswaran, P. Sivaguru, and A. Lalitha, “Synthesis of Novel Bis(pyrimido[5,4-c]quinoline-2,4(1H,3H)-dione) and Its Derivatives: Evaluation of their Antioxidant Properties,” Bioorganic & Medicinal Chemistry Letters 23 (2013): 3873–78. doi:10.1016/j.bmcl.2013.04.068.
  • R. R. Rajawinslin, S. S. Ichake, V. Kavala, S. D. Gawande, Y.-H. Huang, C.-W. Kuo, and C.-F. Yao, “Iron/acetic acid Mediated Synthesis of 6,7-Dihydrodibenzo [b,j] [1,7] Phenanthroline Derivatives via Intramolecular Reductive Cylization,” RSC Advances 5 (2015): 52141–53. doi: 10.1039/c0xx00000x.
  • K. Luo, L. Zhang, J. Ma, Q. Sha, and L. Wu, “Acetic Acid Mediated Sulfonylation of Allenylphosphine Oxides: Divergent Synthesis of Bifunctionalized 1,3-Butadienes and Allenes,” The Journal of Organic Chemistry 82 (2017): 6978–85. doi: 10.1021/acs.joc.7b00813.
  • O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann, “OLEX2: A Complete Structure Solution, Refinement and Analysis Program,” Journal of Applied Crystallography 42 (2009), 339–41. doi:10.1107/S0021889808042726.
  • G. M. Sheldrick, “A Short History of SHELX,” Acta Crystallographica A64 (2008): 112–22. doi:10.1107/S0108767307043930.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.