95
Views
2
CrossRef citations to date
0
Altmetric
Articles

Synthesis of Novel Bioactive Candidates 4-Aryl-1H-indeno[1,2-d]pyrimidine-2,5-diones Using {[HMIM]C(NO2)3} as a Dual Rule Ionic Liquid Catalyst: An Experimental and Theoretical Evaluation of Their Corresponding Antioxidant Activities

, &
Pages 1151-1163 | Received 03 Aug 2018, Accepted 05 Oct 2018, Published online: 31 Dec 2018

References

  • T. Welton, “Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis,” Chemical Reviews 99 (1999): 2071–84.
  • A. C. Cole, J. L. Jensen, I. Ntai, K. L. T. Tran, K. J. Weaver, D. C. Forbes, J. H. Davis, “Novel Brønsted Acidic Ionic Liquids and Their Use as Dual Solvent − Catalysts,” Journal of American Chemical Society 124 (2002): 5962–3.
  • N. V. Plechkova, K. R. Seddon, “Applications of ionic liquids in the chemical industry,” Chemical Society Reviews 37 (2008): 123–50.
  • D. Fang, X. L. Zhou, Z. W. Ye, Z. L. Liu, “Brønsted Acidic Ionic Liquids and Their Use as Dual Solvent − Catalysts for Fischer Esterifications,” Industrial and Engineering Chemistry Research 45 (2006): 7982–4.
  • J. Weng, C. Wang, H. Li, Y. Wang, “Novel quaternary ammonium ionic liquids and their use as dual solvent-catalysts in the hydrolytic reaction,” Green Chemistry 8 (2006): 96–9.
  • P. Biginelli, “Ueber Aldehyduramide des Acetessigäthers,” Berichte der Deutschen Chemischen Gesellschaft 24 (1891): 1317–9.
  • P. Biginelli, “Ueber Aldehyduramide des Acetessigäthers. II,” Berichte der Deutschen Chemischen Gesellschaft 24 (1891): 2962–7.
  • P. Biginelli, P. Gazz , “Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones,” Chimica Italiana 23 (1893): 360–416.
  • C. Wu, Y. Fang, R. C. Larock, F. Shi, “Synthesis of 2H-Indazoles by the [3 + 2] Cycloaddition of Arynes and Sydnones,” Organic Letters 12 (2010): 2234–7.
  • Y. Fang, C. Wu, R. C. Larock, F. Shi, “Synthesis of 2H-Indazoles by the [3 + 2] Dipolar Cycloaddition of Sydnones with Arynes,” Journal of Organic Chemistry 76 (2011): 8840–51.
  • M. L. Kuznetsov, V. Y. Kukushkin, “Theoretical Study of Reactant Activation in 1,3-Dipolar Cycloadditions of Cyclic Nitrones to Free and Pt-Bound Nitriles,” Journal of Organic Chemistry 71 (2006): 582–92.
  • F. Heaney, J. Fenlon, C. O'Mahony, P. McArdle, D. Cunningham, “α-Oximono-esters as precursors to heterocycles – generation of oxazinone N-oxides and cycloadditionto alkene dipolarophiles,” Organic and Biomolecular Chemistry 1 (2003): 4302–16.
  • R. Huisgen, R. Grashey, H. Gotthardt, R. Schmidt, “1,3‐Dipolar Additions of Sydnones to Alkynes. A New Route into the Pyrazole Series,” Angewandte Chemie International Edition 1 (1962): 48–9.
  • X. Fan, Y. Wang, Y. Qu, H. Xu, Y. He, X. Zhang, J. Wang, “Tandem Reactions Leading to Bicyclic Pyrimidine Nucleosides and Benzopyran-4-ones,” Journal of Organic Chemistry 76 (2011): 982–5.
  • J. M. Lopchuk, G. W. Gribble, “Synthesis of 2- and 3-Indolylpyrroles via 1,3-Dipolar Cycloadditions of Münchnones and Nitroalkenes,” Heterocycles 82 (2011): 1617–31.
  • Y. Lu, B. A. Arndtsen, “Palladium Catalyzed Synthesis of Münchnones from α‐Amidoethers: A Mild Route to Pyrroles,” Angewandte Chemie International Edition 47 (2008): 5430–3.
  • A. D. Melhado, M. Luparia, F. D. Toste, “Au(I)-Catalyzed Enantioselective 1,3-Dipolar Cycloadditions of Münchnones with Electron-Deficient Alkenes,” Journal of American Chemistry Society 129 (2007): 12638–9.
  • G. Bélanger, M. April, É. Dauphin, S. Roy, “Effect of Substitution on the Intramolecular 1,3-Dipolar Cycloaddition of Alkene Tethered Münchnones,” Journal of Organic Chemistry 72 (2007): 1104–11.
  • S. R. Angle, X. L. Qian, A. A. Pletnev, J. Chinn, “General Synthesis of Pyrroloquinolizidines: Synthesis of an Unnatural Homologue of the Pyrroloindolizidine Myrmicarin Alkaloid 215B,” Journal of Organic Chemistry 72 (2007): 2015–20.
  • Q. Chen, L. L. Jiang, C. N. Chen, G. F. Yang, “The first example of regioselective Biginelli-like reaction based on 3-alkylthio-5-amino-1,2,4-triazole,” Journal of Heterocyclic Chemistry 46 (2009): 139–48.
  • C. O. Kappe, D. Kumar, R. S. Varma, “Microwave-Assisted High-Speed Parallel Synthesis of 4-Aryl-Dihydro-pyrimidin-2(1H)-ones using a Solventless Biginelli Condensation Protocol,” Synthesis 10 (1999): 1799–803.
  • A. D. Patil, N. V. Kumar, W. C. Kokke, M. F. Bean, A. J. Freyer, C. D. Brosse, S. Mai, A. Truneh, B. Carte, “Novel Alkaloids from the Sponge Batzella sp.: Inhibitors of HIV gp120-Human CD4 Binding,” Journal of Organic Chemistry 60 (1995): 1182–8.
  • E. Palaska, G. Sahin, P. Kelicen, N. T. Durlu, G. Altinok, “Synthesis and anti-Inflammatory Activity of 1-Acylthiosemicarbazides, 1,3,4-Oxadiazoles, 1,3,4-Thiadiazoles and 1,2,4-Triazole-3-thiones,” Farmaco 57 (2002): 101–7.
  • G. J. Grover, S. Dzwonczyk, D. M. McMullen, D. E. Normandin, C. S. Parham, P. G. Sleph, S. Moreland, “Pharmacologic Profile of the Dihydropyrimidine Calcium Channel Blockers SQ 32,547 and SQ 32,946,” Journal of Cardiovascular Pharmacology 26 (1995): 289–94.
  • C. O. Kappe, “100 years of the biginelli dihydropyrimidine synthesis,” Tetrahedron 49 (1993): 6937–63.
  • E. K. Bradley, P. Beroza, J. E. Penzotti, P. D. J. Grootenhuis, D. C. Spellmeyer, J. L. Miller, “A Rapid Computational Method for Lead Evolution: Description and Application to α1-Adrenergic Antagonists,” Journal of Medicinal Chemistry 43 (2000): 2770–4.
  • J. C. Barrow, P. G. Nantermet, H. G. Selnick, K. L. Glass, K. E. Rittle, K. F. Gilbert, T. G. Steele, C. F. Homnick, R. M. Freidinger, R. W. Ransom, et al. “In Vitro and in Vivo Evaluation of Dihydropyrimidinone C-5 Amides as Potent and Selective α1A Receptor Antagonists for the Treatment of Benign Prostatic Hyperplasia,” Journal of Medicinal Chemistry 43 (2000): 2703–18.
  • B. B. Snider, Z. Shi, “Biomimetic Synthesis of (.+-.)-Crambines A, B, C1, and C2. Revision of the Structure of Crambines B and C1,” Journal of Organic Chemistry 58 (1993): 3828–39.
  • K. S. Atwal, S. Moreland, “Dihydropyrimidine Calcium Channel Blockers 51: Bicyclic Dihydropyrimidines as Potent Mimics of Dihydropyridines,” Bioorganic and Medicinal Chemistry Letters 1 (1991): 291–94.
  • G. C. Rovnyak, S. D. Kimball, B. Beyer, G. Cucinotta, J. D. Dimarco, J. Gougoutas, A. Hedberg, M. Malley, J. P. McCarthy, R. Zhang, S. Moreland, “Calcium Entry Blockers and Activators: Conformational and Structural Determinants of Dihydropyrimidine Calcium Channel Modulators,” Journal of Medicinal Chemistry 38 (1995): 119–29.
  • J. G. McCoy, J. J. Marugan, K. Liu, W. Zheng, N. Southall, W. Huang, M. Heilig, C. P. Austin, “Selective Modulation of Gq/Gs pathways by Naphtho Pyrano Pyrimidines As Antagonists of the Neuropeptide S Receptor,” ACS Chemical Neuroscience 1 (2010): 559–74.
  • V. V. Dabholkar, S. R. Patil, R. V. Pandey, “Design, Synthesis, Characterization, and Antimicrobial Activity of Biginelli Products of Indandione,” Journal of Heterocyclic Chemistry 49 (2012): 929–32.
  • Z. N. Siddiqui, T. Khan, “Unprecedented Single-pot Protocol for the Synthesis of Novel Bis-3,4-dihydropyrimidin-2(1H)-ones Using PEG-HClO4 as a Biodegradable, Highly Robust and Reusable Solid Acid Green Catalyst Under Solvent-Free Conditions,” RSC Advances 5 (2014): 2526–37.
  • P. P. Warekar, G. B. Kolekar, M. B. Deshmukh, P.V. Anbhule, “An Efficient and Modified Biginelli-Type Synthesis of 3,4-Dihydro-1H-indeno[1,2-d]pyrimidine-2,5-dione Using Phosphorous Pentoxide,” Synthetic Communications 44 (2014): 3594–601.
  • P. Shanmugam, C. Sabastein, P. T. Perumal, “Synthesis of Fused Dihydropyrimidinones From Cyclic-1,3-dicarbonyl Compounds: Modified Biginelli Synthesis of 1,2,3,4,5,6,7,8-Octahydroquinazolinediones and 3, 4-Dihydro-lH-indeno[1,2-d]pyrimidine-2,5-diones,” Indian Journal of Chemistry 43B (2004): 135–40.
  • S. R. Patil, A. S. Choudhary, V. S. Patil, N. Sekar, “Synthesis, Optical Properties, Dyeing Study of Dihydropyrimidones (DHPMs) Skeleton: Green and Regioselectivity of Novel Biginelli Scaffold from Lawsone,” Fibers and Polymers 16 (2015): 2349–58.
  • M. B. Deshmukh, S. M. Salunkhe, D. R. Patil, P. V. Anbhule, “A Novel and Efficient One Step Synthesis of 2-Amino-5-cyano-6-hydroxy-4-aryl Pyrimidines and their Anti-bacterial Activity,” European Journal of Medicinal Chemistry 44 (2009): 2651–4.
  • D. R. Patil, S. M. Salunkhe, M. B. Deshmukh, P. V. Anbhule, “An Efficient Synthesis of 2,3,4‐Trisubstituted Quinolines through Alkynylation‐cyclization at Ambient Temperature,” Journal of Heterocyclic Chemistry 48 (2011): 1414–8.
  • Y. Huang, H. Gao, B. Twamley, J. M. Shreeve, “Synthesis and Characterization of New Energetic Nitroformate Salts,” European Journal of Inorganic Chemistry 14 (2007): 2025–30.
  • M. A. Zolfigol, S. Baghery, A. R. Moosavi-Zare, S. M. Vahdat, H. Alinezhad, M. Norouzi, “Synthesis of the First Nano Ionic Liquid 1-Methylimidazolium Trinitromethanide {[HMIM]C(NO2)3} and Its Catalytic Use for Hanztsch Four-component Condensation,” RSC Advances 4 (2014): 57662–70.
  • M. A. Zolfigol, F. Afsharnadery, S. Baghery, S. Salehzadeh, F. Maleki, “Catalytic Applications of {[HMIM]C(NO2)3}: As a Nano Ionic Liquid for the Synthesis of Pyrazole Derivatives under Green Conditions and a Mechanistic Investigation with a New Approach,” RSC Advances 5 (2015): 75555–68.
  • T. Persson, B. O. Popescu, A. Cedazo-Minguez, “Oxidative Stress in Alzheimer’s Disease: Why Did Antioxidant Therapy Fail?,” Oxidative Medicine and Cellular Longevity 2014 (2014): 427318–29.
  • R. F. Enes, A. S. Farinha, A. C. Tome, J. A. Cavaleiro, R. Amorati, S. Petrucci, G. F. Pedulli, “Synthesis and Antioxidant Activity of [60]Fullerene–Flavonoid Conjugates,” Tetrahedron 65 (2009): 253–62.
  • A. M. Pisoschi, A. Pop, “The Role of Antioxidants in the Chemistry of Oxidative Stress: A Review,” European Journal of Medicinal Chemistry 97 (2015): 55–74.
  • B. Halliwell, “Free Radicals and Antioxidants: Updating a Personal View,” Nutrition Reviews 70 (2012): 257–65.
  • P. Kulawik, F. O¨zogul, R. Glew, Y. O¨zogul, “Significance of Antioxidants for Seafood Safety and Human Health,” Journal of Agricultural and Food Chemistry 61 (2013): 475–91.
  • M. Oroian, I. Escriche, “Antioxidants: Characterization, Natural Sources, Extraction and Analysis,” Food Research International 74 (2015): 10–36.
  • L. L. Mensor, F. S. Menezes, G. G. Leitão, A. S. Reis, T. C. d. Santos, C. S. Coube, S. G. Leitão, “Screening of Brazilian Plant Extracts for Antioxidant Activity by the Use of DPPH Free Radical Method,” Phytotherapy Research 15 (2001): 127–30.
  • A. B. Ribeiro, V. d. S. Bolzani, M. Yoshida, L. S. Santos, M. N. Eberlin, D. H. Silva, “A New Neolignan and Antioxidant Phenols from Nectandra grandiflora,” Journal of Brazilian Chemistry Society 16 (2005): 526–30.
  • SPSS I. IBM SPSS statistics for Windows, version 20.0. (New York, NY: IBM Corp., 2011)
  • Ø. Hammer, D. Harper, P. Ryan, “Past: Paleontological Statistics Software Package for Education and Data Analysis,” Palaeontologia Electronica 4 (2001): 1–9.
  • J. A. Dean (Ed.), Lange’s Handbook of Chemistry, 16th ed. (New York, NY: McGraw-Hill, 2005)
  • M. A. Zolfigol, M. Safaiee, F. Afsharnadery, N. Bahrami-Nejad, S. Baghery, S. Salehzadeh, F. Maleki, “Silica Vanadic Acid [SiO2–VO(OH)2] as an Efficient Heterogeneous Catalyst for the Synthesis of 1,2-Dihydro-1-aryl-3H-naphth[1,2-e][1,3]oxazin-3-one and 2,4,6-Triarylpyridine Derivatives via Anomeric Based Oxidation,” RSC Advances 5 (2015): 100546–59.
  • A. R. Moosavi-Zare, M. A. Zolfigol, Z. Rezanejad, “Trityl Chloride Promoted the Synthesis of 3-(2,6-diarylpyridin-4-yl)-1H-indoles and 2,4,6-Triarylpyridines by In Situ Generation of Trityl Carbocation and Anomeric Based Oxidation in Neutral Media,” Canadian Journal of Chemistry 94 (2016): 626–30.
  • M. A. Zolfigol, M. Kiafar, M. Yarie, A. Taherpour, M. Saeidi-Rad, “Experimental and Theoretical Studies of the Nanostructured {Fe3O4@SiO2@(CH2)3Im}C(CN)3 Catalyst for 2-Amino-3-cyanopyridine Preparation via an Anomeric Based Oxidation,” RSC Advances 6 (2016): 50100–11.
  • M. A. Zolfigol, F. Karimi, M. Yarie, M. Torabi, “Catalytic Application of Sulfonic Acid‐functionalized Titana‐coated Magnetic Nanoparticles for the Preparation of 1,8‐Dioxodecahydroacridines and 2,4,6‐Triarylpyridines via Anomeric‐based Oxidation,” Applied Organometallic Chemistry 32 (2017): 1–11.
  • M. A. Zolfigol, A. Khazaei, S. Alaie, S. Baghery, F. Maleki, Y. Bayat, A. Asgari, “Experimental and Theoretical Approving of Anomeric Based Oxidation in the Preparation of 2-Sbstituted benz-(imida, oxa and othia)-zoles Using [2,6-DMPy-NO2]C(NO2)3 as a Novel Nano Molten Salt Catalyst,” RSC Advances 6 (2016): 58667–79.
  • M. A. Zolfigol, M. Kiafar, M. Yarie, A. Taherpour, T. Fellowes, A. N. Hancok, A. Yari, “A Convenient Method for Preparation of 2-Amino-4,6-diphenylnicotinonitrile Using HBF4 as an Efficient Catalyst via an Anomeric Based Oxidation: A Joint Experimental and Theoretical Study,” Journal of Molecular Structure 1137 (2017): 674–80.
  • S. Baghery, M. A. Zolfigol, F. Maleki, “[TEATNM] and [TEATCM] as Novel Catalysts for the Synthesis of Pyridine-3,5-dicarbonitriles via Anomeric-Based Oxidation,” New Journal of Chemistry 41 (2017): 9276–90.
  • M. Yarie, “Catalytic Anomeric Based Oxidation,” Iranian Journal of Catalysis SPOTLIGHT 7 (2017): 85–8.
  • J. M. Erhardt, J. D. Wuest, “Transfer of Hydrogen from Orthoamides Reduction of Protons to Molecular Hydrogen,” Journal of American Chemical Society 102 (1980): 6363–64.
  • T. J. Atkins, “Tricyclic Trisaminomethanes,” Journal of American Chemical Society 102 (1980): 6364–5.
  • J. M. Erhardt, E. R. Grover, J. D. Wuest, “Transfer of Hydrogen from Orthoamides. Synthesis, Structure, and Reactions of Hexahydro-6bH-2a,4a,6a-triazacyclopenta[c,d]pentalene and Perhydro-3a,6a,9a-triazaphenalene,” Journal of American Chemical Society 102 (1980): 6365–9.
  • K. T. Greenway, A. G. Bischoff, B. M. Pinto, “Probing Hyperconjugation Experimentally with the Conformational Deuterium Isotope Effect,” Journal of Organic Chemistry 77 (2012): 9221–6.
  • Y. Mo, “Computational Evidence that Hyperconjugative Interactions Are not Responsible for the Anomeric Effect,” Nature Chemistry 2 (2010): 666–71.
  • I. V. Alabugin, K. M.Gilmore, P. W. Peterson, “Hyperconjugation,” WIREs Computational Molecular Sciences 1 (2011): 109–41.
  • L. F. Wang, H. Y. Zhang, “A Theoretical Investigation on DPPH Radical-Scavenging Mechanism of Edaravone,” Bioorganic Medicinal Chemistry Letters 13 (2003): 3789–92.
  • M. J. Frisch, Gaussian 09, Revision A.02. (Wallingford, CT: Gaussian, Inc, 2009)
  • V. Bondet, W. Brand-Williams, C. Berset, “Kinetics and Mechanisms of Antioxidant Activity Using the DPPH Free Radical Method,” Food Science and Technology 30 (1997): 609–15.
  • P. Shanmugam, P. T. Perumal, “Regioselective Dehydrogenation of 3,4-Dihydropyrimidin-2(1H)-ones Mediated by Ceric Ammonium Nitrate,” Tetrahedron 62 (2006): 9726–34.
  • P. Shanmugam, P. T. Perumal, “An Unusual Oxidation–Dealkylation of 3,4-Dihydropyrimidin-2(1H)-ones Mediated by Co(NO3)2·6H2O/K2S2O8 in Aqueous Acetonitrile,” Tetrahedron 63 (2007): 666–72.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.