100
Views
5
CrossRef citations to date
0
Altmetric
Articles

A Highly Efficient and Green Synthesis of Pyrimido-Fused Benzophenazines via Microwave-Assisted and H3PW12O40@Nano-ZnO Catalyzed a Sequential One-Pot Cyclization in Aqueous Medium

&
Pages 1164-1174 | Received 07 Oct 2017, Accepted 05 Oct 2018, Published online: 31 Dec 2018

References

  • J. B. Laursen, and J. Nielsen, “Phenazine Natural Products: Biosynthesis, Synthetic Analogues, and Biological Activity,” Chemical Reviews 104 (2004): 1663–86.
  • A. Price-Whelan, L. E. Dietrich, and D. K. Newman, “Rethinking ‘Secondary’ Metabolism: Physiological Roles for Phenazine Antibiotics,” Nature Chemical Biology 2 (2006): 71–8.
  • D. V. Mavrodi, W. Blankenfeldt, and L. S. Thomashow, “Phenazine Compounds in Fluorescent Pseudomonas spp. biosynthesis and Regulation,” Annual Review of Phytopathology 44 (2006): 417–45.
  • D. V. Mavrodi, T. L. Peever, O. V. Mavrodi, J. A. Parejko, J. M. Raaijmakers, P. Lemanceau, S. Mazurier, L. Heide, W. Blankenfeldt, D. M. Weller, et al., “Diversity and Evolution of the Phenazine Biosynthesis Pathway,” Applied and Environmental Microbiology 76 (2010): 866–79.
  • S. Nakaike, T. Yamagishi, K. Nanaumi, S. Otomo, and S. Tsukagoshi, “Cell‐Killing Activity and Kinetic Analysis of a Novel Antitumor Compound NC‐190, a Benzo[a]phenazine Derivative,” Cancer Science 83 (1992): 402–9.
  • P. Mistry, A. J. Stewart, W. Dangerfield, M. Baker, C. Liddle, D. Bootle, B. Kofler, D. Laurie, W. A. Denny, B. Baguley, et al., “In Vitro and In Vivo Characterization of XR11576, a Novel, Orally Active, Dual Inhibitor of Topoisomerase I and II,” Anti-Cancer Drugs 13 (2002): 15–28.
  • A. J. Stewart, P. Mistry, W. Dangerfield, D. Bootle, M. Baker, B. Kofler, S. Okiji, B. C. Baguley, W. A. Denny, and P. A. Charlton, “Antitumor Activity of XR5944, a Novel and Potent Topoisomerase Poison,” Anti-Cancer Drugs 12 (2001): 359–67.
  • N. Vicker, L. Burgess, I. S. Chuckowree, R. Dodd, A. J. Folkes, D. J. Hardick, T. C. Hancox, W. Miller, J. Milton, S. Sohal, et al., “Novel Angular Benzophenazines: Dual Topoisomerase I and Topoisomerase II Inhibitors as Potential Anticancer Agents,” Journal of Medicinal Chemistry 45 (2002): 721–39.
  • S. A. Gamage, J. A. Spicer, G. W. Rewcastle, J. Milton, S. Sohal, W. Dangerfield, P. Mistry, N. Vicker, P. A. Charlton, and W. A. Denny, “Structure−Activity Relationships for Pyrido-, Imidazo-, Pyrazolo-, Pyrazino-, and Pyrrolophenazinecarboxamides as Topoisomerase-Targeted Anticancer Agents,” Journal of Medicinal Chemistry 45 (2002): 740–43.
  • H.-J. Lee, J. S. Kim, S.-Y. Park, M.-E. Suh, H. J. Kim, E.-K. Seo, and C.-O. Lee, “Synthesis and Cytotoxicity Evaluation of 6,11-Dihydro-pyridazo-and 6,11-Dihydro-pyrido [2,3-b] phenazine-6,11-diones,” Bioorganic and Medicinal Chemistry 12 (2004): 1623–28.
  • J. S. Kim, H.-K. Rhee, H. J. Park, I.-K. Lee, S. K. Lee, M.-E. Suh, H. J. Lee, C.-K. Ryu, and H.-Y. P. Choo, “Synthesis of 6-Chloroisoquinoline-5, 8-diones and Pyrido [3, 4-b] phenazine-5, 12-Diones and Evaluation of Their Cytotoxicity and DNA Topoisomerase II Inhibitory Activity,” Bioorganic and Medicinal Chemistry 15 (2007): 451–57.
  • B. B. Fischer, A. Krieger-Liszkay, and R. I. Eggen, “Photosensitizers Neutral Red (Type I) and Rose Bengal (Type II) Cause Light-Dependent Toxicity in Chlamydomonas reinhardtii and Induce the Gpxh Gene via Increased Singlet Oxygen Formation,” Environmental Science and Technology 38 (2004): 6307–13.
  • N. Nakamichi, Y. Kawashita, and M. Hayashi, “Activated Carbon-Promoted Oxidative Aromatization of Hantzsch 1, 4-Dihydropyridines and 1, 3, 5-Trisubstituted Pyrazolines Using Molecular Oxygen,” Synthesis 2004 (2004): 1015–20.
  • D. Zhang, X. Chen, X. Guo, Y. Zhang, Y. Hou, T. Zhao, and Q. Gu, “An Efficient Solvent-Free Synthesis of Isoxazolyl-1,4-dihydropyridines on Solid Support SiO2 Under Microwave Irradiation,” Monatshefte für Chemie-Chemical Monthly 147 (2016): 1605–14.
  • I. Sabakhi, V. Topuzyan, Z. Hajimahdi, B. Daraei, H. Arefi, and A. Zarghi. “Design, Synthesis and Biological Evaluation of New 1,4-Dihydropyridine (DHP) Derivatives as Selective Cyclooxygenase-2 Inhibitors,” Iranian Journal of Pharmaceutical Research 14 (2015): 1087.
  • G. Swarnalatha, G. Prasanthi, N. Sirisha, and C. M. Chetty. “1, 4-Dihydropyridines: A Multifunctional Molecule—A Review,” International Journal of ChemTech Research 3 (2011): 75–89.
  • T. Godfraind, R. Miller, and M. Wibo, “Calcium Antagonism and Calcium Entry Blockade,” Pharmacological Reviews 38 (1986): 321–416.
  • A. Sausins, and G. Duburs, Synthesis of 1,4-Dihydropyridines by Cyclocondensation Reactions,” Heterocycles 27 (1988): 269–89.
  • P. Mager, R. Coburn, A. Solo, D. Triggle, and H. Rothe. “QSAR, Diagnostic Statistics and Molecular Modelling of 1, 4-Dihydropyridine Calcium Antagonists: A Difficult Road Ahead,” Drug Design and Discovery 8 (1992): 273–89.
  • R. Mannhold, B. Jablonka, W. Voigt, K. Schönafinger, and E. Schraven, “Calcium and Calmodulin-Antagonism of Elnadipine Derivatives: Comparative SAR,” European Journal of Medicinal Chemistry 27 (1992): 229–35.
  • A. Shafiee, N. Rastkari, and M. Sharifzadeh. “Anticonvulsant Activities of New 1, 4-Dihydropyridine Derivatives Containing 4-Nitroimidazolyl Substituents,” DARU Journal of Pharmaceutical Sciences 12 (2004): 81–6.
  • L.-Q. Kang, Z.-J. Cao, and Z.-J. Lei, “2-Hydroxyethylammonium Acetate: An Efficient and Reusable Homogeneous Catalyst for the Synthesis of Hantzsch 1, 4-Dihydropyridines,” Monatshefte für Chemie-Chemical Monthly 147 (2016): 1125–28.
  • F. Bossert, H. Meyer, and E. Wehinger, “4‐Aryldihydropyridines, a New Class of Highly Active Calcium Antagonists,” Angewandte Chemie International Edition 20 (1981): 762–69.
  • G. Brahmachari, Green Synthetic Approaches for Biologically Relevant Heterocycles (Amsterdam: Elsevier, 2014).
  • Ameta, K., and A. Dandia. Green Chemistry: Synthesis of Bioactive Heterocycles (Springer, 2014).
  • L.-R. Wen, S.-L. Li, J. Zhang, and M. Li, “Convenient Synthesis of Benzo[4,5]thiazolo [2,3-c][1,2,4]triazoles with 1 mol% CuCl2·2H2O as Catalyst in Water,” Green Chemistry 17 (2015): 1581–88.
  • H. Zhao, T. Zhang, T. Yan, and M. Cai, “Recyclable and Reusable [RuCl2(p-cymene)]2/Cu(OAc)2/PEG-400/H2O System for Oxidative C-H Bond Alkenylations: Green Synthesis of Phthalides,” The Journal of Organic Chemistry 80 (2015): 8849–55.
  • W. Yang, L. Wei, F. Yi, and M. Cai, “Highly Efficient and Recyclable Magnetic Nanoparticles-Supported Gold (III)-Bipy Catalyst for Oxidative α-Cyanation of Tertiary Amines,” Tetrahedron 72 (2016): 4059–67.
  • C. O. Kappe, “Controlled Microwave Heating in Modern Organic Synthesis,” Angewandte Chemie International Edition 43 (2004): 6250–84.
  • A. R. Bhat, A. H. Shalla, and R. S. Dongre, “Microwave Assisted One-Pot Catalyst Free Green Synthesis of New Methyl-7-amino-4-oxo-5-phenyl-2-thioxo-2,3,4,5-tetrahydro-1H-pyrano[2,3-d]pyrimidine-6-carboxylates as Potent In Vitro Antibacterial and Antifungal Activity,” Journal of Advanced Research 6 (2015): 941–48.
  • E. Rafiee, and S. Eavani, “H3PW12O40 Supported on Silica-Encapsulated γ-Fe2O3 Nanoparticles: A Novel Magnetically-Recoverable Catalyst for Three-Component Mannich-Type Reactions in Water,” Green Chemistry 13 (2011): 2116–22.
  • J. S.Ghomi, and Z. Akbarzadeh, “Ultrasonic Accelerated Knoevenagel Condensation by Magnetically Recoverable MgFe2O4 Nanocatalyst: A rapId and Green Synthesis of Coumarins Under Solvent-Free Conditions,” Ultrasonics Sonochemistry 40 (2018): 78–83.
  • H. Mehrabi, and M. Kazemi-Mireki, “CuO Nanoparticles: An Efficient and Recyclable Nanocatalyst for the Rapid and Green Synthesis of 3, 4-Dihydropyrano[c]chromenes,” Chinese Chemical Letters 22 (2011): 1419–22.
  • B. Paul, S. Vadivel, S. S. Dhar, S. Debbarma, and M. Kumaravel, “One-Pot Green Synthesis of Zinc Oxide Nano Rice and Its Application as Sonocatalyst for Degradation of Organic Dye and Synthesis of 2-Benzimidazole Derivatives,” Journal of Physics and Chemistry of Solids 104 (2017): 152–59.
  • P. P. Ghosh, and A. R. Das, “Nano Crystalline ZnO: A Competent and Reusable Catalyst for One Pot Synthesis of Novel Benzylamino Coumarin Derivatives in Aqueous Media,” Tetrahedron Letters 53 (2012): 3140–43.
  • B. V. Kumar, H. S. B. Naik, D. Girija, and B. V. Kumar, “ZnO Nanoparticle as Catalyst for Efficient Green One-Pot Synthesis of Coumarins Through Knoevenagel Condensation. Journal of Chemical Sciences 123 (2011): 615–21.
  • R. Mohebat, and A. Yazdani-Elah-Abadi, “Caffeine Catalyzed Green Synthesis of Novel Benzo[a][1,3]oxazino[6,5-c]phenazines via a One-Pot Multi-Component Sequential Protocol in a Basic Ionic Liquid,” Chinese Chemical Letters 28 (2017): 1340–44.
  • A. Yazdani-Elah-Abadi, R. Mohebat, and M.-T. Maghsoodlou, “Theophylline as the Catalyst for the Diastereoselective Synthesis of Trans-1, 2-dihydrobenzo [a] furo [2, 3-c] Phenazines in Water,” RSC Advances 6 (2016): 84326–33.
  • A. Yazdani-Elah-Abadi, M.-T. Maghsoodlou, R. Mohebat, and R. Heydari, “Theophylline as a New and Green Catalyst for the One-Pot Synthesis of Spiro[benzo [a]pyrano [2, 3-c]phenazine] and Benzo[a]pyrano[2,3-c]phenazine Derivatives Under Solvent-Free Conditions,” Chinese Chemical Letters 28 (2017): 446–52.
  • R. Mohebat, A. Yazdani-Elah-Abadi, M.-T. Maghsoodlou, and N. Hazeri. “DABCO-Catalyzed Multi-Component Domino Reactions for Green and Efficient Synthesis of Novel 3-Oxo-3H-benzo[a]pyrano[2,3-c]phenazine-1-carboxylate and 3-(5-Hydroxybenzo[a]phenazin-6-yl) Acrylate Derivatives in Water,” Chinese Chemical Letters 28 (2017): 943–48.
  • R. Mohebat, A. Y. E. Abadi, M.-T. Maghsoodlou, and M. Mohammadi, “PTSA-Catalyzed Four-Component Domino Reactions for the One-Pot Synthesis of Functionalized 11H-Benzo [a] benzo [6,7] chromeno [2, 3-c] phenazine-11,16(17H)-diones in PEG,” Research on Chemical Intermediates 42 (2016): 5915–26.
  • M. Taghavi, M. Tabatabaee, M. H. Ehrampoush, M. T. Ghaneian, M. Afsharnia, A. Alami, and J. Mardaneh, “Synthesis, Characterization and Photocatalytic Activity of TiO2/ZnO-Supported Phosphomolybdic Acid Nanocomposites,” Journal of Molecular Liquids 249 (2018): 546–53.
  • J.-H. Lim, S.-W. Ha, and J.-K. Lee, “Precise Size-Control of Silica Nanoparticles via Alkoxy Exchange Equilibrium of Tetraethyl Orthosilicate (TEOS) in the Mixed Alcohol Solution,” Bulletin of the Korean Chemical Society 33 (2012): 1067–70.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.