255
Views
11
CrossRef citations to date
0
Altmetric
Articles

ChCl:2ZnCl2 Catalyzed Efficient Synthesis of New Sulfonyl Decahydroacridine-1,8-Diones via One-Pot Multicomponent Reactions to Discover Potent Antimicrobial Agents

, , , , &
Pages 1175-1186 | Received 06 Dec 2017, Accepted 05 Oct 2018, Published online: 08 Jan 2019

References

  • M. A. Ghasemzadeh, J. Safaei-Ghomi, and H. Molaei, “Fe3O4 Nanoparticles: As an Efficient, Green and Magnetically Reusable Catalyst for the One-Pot Synthesis of 1,8-Dioxo-Decahydroacridine Derivatives Under Solvent-Free Conditions,” Comptes Rendus Chime 15, (2012): 969–74.
  • J. R. Goodell, A. A. Madhok, H. Hiasa, and D. M. Ferguson, “Synthesis and Evaluation of Acridine and Acridone-Based Anti-Herpes Agents with Topoisomerase Activity,” Bioorganic and Medicinal Chemistry 14, (16) (2006): 5467–80.
  • (a) M. M. Amini, Y. Fazaeli, Z. Yassaee, S. Feizi, and A. Bazgir, “Polytungstozincate Acid: A New and Efficient Catalyst for the Synthesis of Xanthenes Under Solvent-Free Conditions” Open Catalysis Journal 2, (2009): 40–44; (b) S. Gallo, S. Atifi, A. Mahamoud, C. Santelli-Rouvier, K. Wolfárt, J. Molnar, and J. Barbe, “Synthesis of Aza Mono, Bi and Tricyclic Compounds. Evaluation of Their Anti MDR Activity,” Europe Journal of Medicinal Chemistry 38, (2003): 19–26.
  • F. Rashedian, D. Saberi, and K. Niknam, “Silica-Bonded N-Propyl Sulfamic Acid: A Recyclable Catalyst for the Synthesis of 1,8-Dioxo-decahydroacridines, 1,8-Dioxo-octahydroxanthenes and Quinoxalines,” Journal of Chinese Chemistry Society 57, (2010): 998–1006.
  • J. P. Poupelin, G. Saint-Rut, O. Foussard-Blanpin, G. Narcisse, G. Uchida-Ernouf, and R. Lacroix, “Synthesis and Antiinflammatory Properties of Bis (2-Hydroxy-1-Naphthyl)Methane Derivatives-I,” European Journal of Medicinal Chemistry 13, (1978): 67–71.
  • (a) G. Cholewinski, K. Dzierzbicka, and A. M. Kolodziejczyk, Pharmacological Reports 63, (2011): 305. (b) K. B. Ramesh and M. A. Pasha, “Study on One-Pot Four-Component Synthesis of 9-Aryl-Hexahydroacridine-1,8-Diones Using SiO2-I as a New Heterogeneous Catalyst and Their Anticancer Activity,” Bioorganic and Medicinal Chemistry Letters, 24, (2014): 3907–13.
  • R. M. Ion, D. Frackowiak, A. Planner, and K.Wiktorowicz, “The Incorporation of Various Porphyrins into Blood Cells Measured Via Flow Cytometry, Absorption and Emission Spectroscopy,” Acta Biochimica Polonica 45, (1998): 833–45.
  • (a) J. Hornedo and D. A. Van, “Amsacrine (m-AMSA): A New Antineoplastic Agent. Pharmacology, Clinical Activity and Toxicity,” Pharmacotherapy,5 (2), (1985): 78–90; (b) J. Sarre, “The Diffuse Interstellar Bands: A Major Problem in Astronomical Spectroscopy,” Journal of Molecular Spectroscopy 238, (2006): 1–10; (c) A. D. Wolfe, T. M. Cook, and F. E. Hahn “Antibacterial Nitroacridine, Nitroakridin 3582: Binding to Nucleic Acids In Vitro and Effects on Selected Cell-Free Model Systems of Macromolecular Biosynthesis,” Journal of Bacteriology 108 (3), (1971): 1026–33.
  • (a) M. Yus, C. Najera, and F. Foubelo, “The Role of 1,3-Dithianes in Natural Product Synthesis,” Tetrahedron 59, (2003): 6147–6212; (b) P. Metzner and A. Thuillier, Sulfur Reagents in Organic Synthesi (London: Academic Press, 1994); (c) C. M. Rayner, “Synthesis of Thiols, Sulfides, Sulfoxides and Sulfones,” Contemporary Organic Synthesis 2, (1995): 409–40.
  • (a) Y. I. Zhu and M. J. Stiller, “Dapsone and Sulfones in Dermatology: Overview and Update,” Journal of the American Academy of Dermatology 45(3), (2001): 420–34; (b) C. P. Cannon, S. P. Curtis, G. A. Fitzgerald, H. Krum, A. Kaur, J. A Bolognese, A. S. Reicin, C. Bombardier, M. E. Weinblatt, D. Van Der Heijde, E. Erdmann, and L. Laine, “Cardiovascular Outcomes with Etoricoxib and Diclofenac in Patients with Osteoarthritis and Rheumatoid Arthritis in the Multinational Etoricoxib and Diclofenac Arthritis Long-term (MEDAL) Programme: A Randomised Comparison,” The Lancet 368 (9549), (2006): 1771–81.
  • B. Das, P. Thirupathi, I. Mahender, V. S. Reddy, and Y. Koteswara, “Amberlyst-15: An Efficient Eeusable Heterogeneous Catalyst for the Synthesis of 1, 8-Dioxo-Octahydroxanthenes and 1, 8-Dioxo-Decahydroacridines,” Journal of Molcular Catalysis A: Chemical 247, (2006): 233.
  • X. S. Wang, D. Q. Shi, Y. F. Zhang, S. H. Wang, and S. J. Tu, “Synthesis of 9-Arylpolyhydroacridine in Water Catalyzed by Triethylbenzylammonium Chloride (TEBA),” Chinese Journal of Organic Chemistry 24 (4), (2004): 430–32.
  • M. Kidwai and D. Bhatnagar, “Ceric Ammonium Nitrate (CAN) Catalyzed Synthesis of N-Substituted Decahydroacridine-1,8-Diones in PEG,” Tetrahedron Letters 51, (2010): 2700–703.
  • M. Kiani and M. Mohammadipour, “Fe3O4@SiO2-MoO3H Nanoparticles: A Magnetically Recyclable Nanocatalyst System for the Synthesis of 1,8-Dioxo-Decahydroacridine Derivatives,” RSC Advances 7, (2017): 997.
  • C. S. Maheswari, M. R. Ramesh, and A. Lalitha, “One-Pot Synthesis of Symmetrical and Unsymmetrical Acridine Sulfonamide Derivatives Catalyzed by p-TSA,” Research on Chemical Intermediates 43, (2017): 4165–73.
  • T. S. Jin, J. S. Zhang, T. T. Guo, A. Q. Wang, and T. S. Li, “One-Pot Clean Synthesis of 1,8-Dioxo-Decahydroacridines Catalyzed by p-Dodecylbenzenesulfonic Acid in Aqueous Media,” Synthesis 12, (2004): 2001–2005.
  • A. V. Chate, S. B. Sukale, R. S. Ugale, and C. H. Gill, “Baker’s Yeast: An Efficient, Green, and Reusable Biocatalyst for the One-Pot Synthesis of Biologically Important N-Substituted Decahydroacridine-1,8-Dione Derivatives,” Synthetic Communications 47, (2017): 409–20.
  • (a) N. Hazeri, A. Masoumnia, M. T. Mghsoodlou, S. Salahi, M. Kangani, S. Kianpour, S. Kiaee, and J. Abonajmi, “Acetic Acid as an Efficient Catalyst for Synthesis of 1,8-Dioxo-Octahydroxanthenes and 1,8-Dioxodecahydroacridines,” Research on Chemical Intermediates 41, (2015): 4123–31; (b) C. A. Navarro, C. A. Sierra, and C. Ochoa-Puentes, “Evaluation of Sodium Acetate Trihydrate–Urea DES as a Benign Reaction Media for the Biginelli Reaction. Unexpected Synthesis of Methylenebis(3-Hydroxy-5,5-Dimethylcyclohex-2-Enones), Hexahydroxanthene-1,8-Diones and Hexahydroacridine-1,8-Diones,” RSC Advances 6, (2016): 65355–65.
  • (a) M. Chandra, M. R. Volla, I. Atodiresei, and M. Rueping, “Catalytic C–C Bond-Forming Multi-Component Cascade or Domino Reactions: Pushing the Boundaries of Complexity in Asymmetric Organocatalysis,” Chemical Reviews 114 (4), (2014): 2390–2431; (b) J. Andraos, “Unification of Reaction Metrics for Green Chemistry II: Evaluation of Named Organic Reactions and Application to Reaction Discovery,” Organic Process Research & Development 9, (2005): 404–31; (c) S. N. Maddila, S. Maddila, W. E. van Zyl, and S. B. Jonnalagadda, “Ceria–Vanadia/Silica‐Catalyzed Cascade for C − C and C − O Bond Activation: Green One‐Pot Synthesis of 2‐Amino‐3‐Cyano‐4H‐Pyrans,” Chemistry Open 5, (2016): 38–42.
  • (a) Y. Gu, “Multicomponent Reactions in Unconventional Solvents: State of the Art,” Green Chemistry, 14, (2012): 2091–128; (b) R. C. Cioc, E. Ruijter, and R. V. A. Orru, “Multicomponent Reactions: Advanced Tools for Sustainable Organic Synthesis,” Green Chemistry 16, (2014): 2958–75.
  • (a) A. P. Abbott, R. C. Harris, K. S. Ryder, C. D'Agostino, L. F. Gladden, and M. D. Mantle, “Glycerol Eutectics as Sustainable Solvent Systems,” Green Chemistry 13, (2011): 82–90; (b) M. Francisco, A. van den Bruinhorst, and M. C. Kroon, “Low-Transition-Temperature Mixtures (LTTMs): A New Generation of Designer Solvents,” Angewandte Chemie 52, (2013): 3074–85; (c) J. Garcia-Alvarez, “Deep Eutectic Mixtures: Promising Sustainable Solvents for Metal-Catalysed and Metal-Mediated Organic Reactions,” European Journal of Inorganic Chemistry 2015, (2015): 5147–57.
  • (a) A. Ghorad, S. Mahalle, L. D. Khillare, J. N. Sangshetti, and M. R. Bhosle, “β-Cyclodextrin as a Biomimetic Catalyst for the Efficient Synthesis of 4-Oxo-Pyrido[1,2-a] Pyrimidine-3-Carbonitrile in Aqueous Medium,” Catalysis Letters 147, (2017): 640–48; (b) M. R. Bhosle, D. S. Shaikh, L. D. Khillare, A. R. Deshmukh, and R. A. Mane, “Diisopropylethylammonium Acetate (DIPEAc): An Efficient and Recyclable Catalyst for the Rapid Synthesis of 5-Substituted-1H-Tetrazoles,” Synthetic Communications 47 (7), (2017): 695–703.
  • (a) A. P. Abbott, G. Capper, D. L. Davies, H. L. Munro, R. K. Rasheed and V. Tambyrajah, “Preparation of Novel, Moisture-Stable, Lewis-Acidic Ionic Liquids Containing Quaternary Ammonium Salts with Functional Side Chains,” Chemical Communications (2001): 2010–2011; (b) A. Pandey, D. Bhawna, Dhingra, and S. Pandey, “Hydrogen Bond Donor/Acceptor Cosolvent-Modified Choline Chloride-Based Deep Eutectic Solvents,” Journal of Physical Chemistry B 121, (2017): 4202–12; (c) G. Pulletikurthi, M. Shapouri Ghazvini, T. Cui, N. Borisenko, T. Carstens, A. Borodin, and F. Endres, “Electrodeposition of Zinc Nanoplates from an Ionic Liquid Composed of 1-Butylpyrrolidine and ZnCl2: Electrochemical, in situ AFM and Spectroscopic Studies,” Dalton Transactions 46, (2017): 455–64.
  • (a) Z. Xu, F. De Moliner, A. P. Cappelli, and C. Hulme, “Aldol Reactions in MCR Based Domino pathways: A Multipurpose Enabling Tool in Heterocyclic Chemistry,” Organic Letters 15, (2013): 2738–41; (b) Z. Xu, F. De Moliner, A. P. Cappelli, and C. Hulme, “Ugi/Aldol Sequence: Expeditious Entry to Several Families of Densely Substituted Nitrogen Heterocycles,” Angewandte Chemie 51, (2012): 8037–40.
  • (a) C. Rub and B. Konig, “Low Melting Mixtures in Organic Synthesis—An Alternative to Ionic Liquids,” Green Chemistry 14, (2012): 2969–82; (b) A. Sanchez-Fernandez, T. Arnold, A. J. Jackson, S. L. Fussell, R. K. Heenan, R. A. Campbell, and K. J. Edlera, “Micellization of Alkyltrimethylammonium Bromide Surfactants in Choline Chloride:Glycerol Deep Eutectic Solvent,” Physical Chemistry Chemical Physics 18, (2016): 33240–49.
  • D. R. Greenwood, C. B. Slack, and J. F. Peutherer, Medical Microbiology, 14th edn (ELBS London, 1 1992).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.