243
Views
14
CrossRef citations to date
0
Altmetric
Articles

NaN3 Catalyzed Highly Convenient Access to Functionalized 4H-chromenes: A Green One-pot Approach for Diversity Amplification

, , &
Pages 1581-1594 | Received 16 Aug 2018, Accepted 16 Dec 2018, Published online: 11 Jan 2019

References

  • A. H. Shinde, S. Arepally, M. D. Baravkar, and D. S. Sharada, “Nickel-Catalyzed Aerobic Oxidative Isocyanide Insertion: Access to Benzimidazoquinazoline Derivatives via a Sequential Double Annulation Cascade (SDAC) Strategy,” The Journal of Organic Chemistry 82, no. 1 (2017): 331–42.
  • G. J. Kelly, F. King, and M. Kett, “Waste Elimination in Condensation Reactions of Industrial Importance,”Green Chemistry 4, no. 4 (2002): 392–9.
  • J. Weitkamp, M. Hunger, and U. Rymsa, “Base Catalysis on Microporous and Mesoporous Materials: Recent Progress and Perspectives,” Microporous and Mesoporous Materials 48, no. 1–3 (2001): 255–70.
  • R. A. Sheldon, “Atom Efficiency and Catalysis in Organic Synthesis,”Pure and Applied Chemistry 72, no. 7 (2000): 1233–46.
  • A. Zapf, and M. Beller, “Fine Chemical Synthesis with Homogeneous Palladium Catalysts: Examples, Status and Trends,” Topics in Catalysis 19, no. 1 (2002): 101–9.
  • M. Dabiri, Z. N. Tisseh, M. Bahramnejad, and A. Bazgir, “Sonochemical Multi-Component Synthesis of Spirooxindoles,” Ultrasonics Sonochemistry 18, no. 5 (2011): 1153–9.
  • A. Hasaninejad, A. Zare, and M. Shekouhy, “Highly Efficient Synthesis of Triazolo[1,2-a]indazole-Triones and Novel Spiro Triazolo[1,2-a]indazole-tetraones under Solvent-Free Conditions,” Tetrahedron 67, no. 2 (2011): 390–400.
  • B. Maleki, G. Esmailian, and R. Tayebee, “One-Pot Synthesis of Polysubstituted Imidazoles Catalysed by an Ionic Liquid,” Organic Preparations and Procedures International 47, no. 6 (2015): 461–72.
  • A. Domling, and I. Ugi, “Multicomponent Reactions with Isocyanides,” Angewandte Chemie International Edition 39 (2000): 3169–210.
  • A. Shaabani, A. Maleki, A. H. Rezayan, and A. J. Sarvary, “Recent Progress of Isocyanide-Based Multicomponent Reactions in Iran,” Molecular Diversity 15, no. 1 (2011): 41–68.
  • C. Altug, A. K. Burnett, E. Caner, Y. Durust, M. C. Elliott, R. P. J. Glanville, C. Guy, and A. D. Westwell, “An Efficient One-Pot Multicomponent Approach to 5-Amino-7-aryl-8-nitrothiazolo[3,2-a]Pyridines,” Tetrahedron 67, no. 49 (2011): 9522–8.
  • M. N. Elinson, A. I. Ilovaisky, V. M. Merkulova, P. A. Belyakov, A. O. Chizhov, and G. I. Nikishin, “Solvent-Free Cascade Reaction: Direct Multicomponent Assembling of 2-amino-4H-Chromene Scaffold from Salicylaldehyde, Malononitrile or Cyanoacetate and Nitroalkanes,” Tetrahedron 66, no. 23 (2010): 4043–8.
  • M. G. Dekamin, and Z. Mokhtari, “Highly Efficient and Convenient Strecker Reaction of Carbonyl Compounds and Amines with TMSCN Catalyzed by MCM-41 Anchored Sulfonic Acid as a Recoverable Catalyst,” Tetrahedron 68, no. 3 (2012): 922–30.
  • G. Brahmachari, “Room Temperature One-Pot Green Synthesis of Coumarin-3-Carboxylic Acids in Water: A Practical Method for the Large-Scale Synthesis,” ACS Sustainable Chemistry & Engineering 3 (2015): 2350–8.
  • M. Bancirova, “Sodium Azide as a Specific Quencher of Singlet Oxygen During Chemiluminescent Detection by Luminol and Cypridina Luciferin Analogues,” Luminescence 26, no. 6 (2011): 685–8.
  • Z. Dong, X. Liu, J. Feng, M. Wang, L. Lin, and X. Feng, “Efficient Asymmetric Synthesis of 4H‐Chromene Derivatives through a Tandem Michael Addition-Cyclization Reaction Catalyzed by a Salen-Cobalt(II) Complex,” European Journal of Organic Chemistry 2011, no. 1 (2011): 137–42.
  • L. Moafi, S. Ahadi, and A. Bazgir, “New HA 14-1 Analogues: Synthesis of 2-Amino-4-cyano-4H-Chromenes,” Tetrahedron Letters 51, no. 48 (2010): 6270–4.
  • L. Alvey, S. Prado, V. Huteau, B. S. Jonis, S. Michel, M. Koch, S. T. Cole, F. Tillequin, and Y. L. Janin, “A New Synthetic Access to Furo[3,2-f]chromene Analogues of an Antimycobacterial,” Bioorganic & Medicinal Chemistry 16 (2008): 8264–72.
  • T. Symeonidis, M. Chamilos, D. J. H. Litina, M. Kallitsakis, and K. E. Litinas, “Synthesis of Hydroxycoumarins and Hydroxybenzo[f]- or [h]Coumarins as Lipid Peroxidation Inhibitors,” Bioorganic & Medicinal Chemistry Letters 19 (2009): 1139–42.
  • T. Narender, Shweta, and S. Gupta, “A Convenient and Biogenetic Type Synthesis of Few Naturally Occurring Chromeno Dihydrochalcones and Their In Vitro Antileishmanial Activity,” Bioorganic & Medicinal Chemistry Letters 14 (2004): 3913–6.
  • V. Lakshmi, K. Pandey, A. Kapil, N. Singh, M. Samant, and A. Dube, “In Vitro and In Vivo Leishmanicidal Activity of Dysoxylum Binectariferum and Its Fractions against Leishmania donovani,”Phytomedicine 14, no. 1 (2007): 36–42.
  • D. Kumar, V. B. Reddy, S. Sharad, U. Dube, and S. Kapur, “A Facile One-Pot Green Synthesis and Antibacterial Activity of 2-Amino-4H-pyrans and 2-amino-5-oxo-5,6,7,8-tetrahydro-4H-Chromenes,” European Journal of Medicinal Chemistry 44, no. 9 (2009): 3805–9.
  • A. M. Agrody, M. H. Hakium, M. S. Latif, A. H. Fekery, E. M. Sayed, and K. A. Ghareab, “Synthesis of Pyrano [2,3-d]Pyrimidine and Pyrano[3,2-e] [1,2,4]triazolo[2,3-c]pyrimidine Derivatives with Promising Antibacterial Activity,” Acta Pharmaceutica 50 (2000): 111–20.
  • M. C. Yimdjo, A. G. Azebaze, A. E. Nkengfack, A. M. Meyer, B. Bodo, and Z. T. Fomum, “Antimicrobial and Cytotoxic Agents from Calophyllum Inophyllum,”Phytochemistry 65, no. 20 (2004): 2789–95.
  • Z. Q. Xu, K. Pupek, W. J. Suling, L. Enache, and M. T. Flavin, “Pyranocoumarin, a Novel anti-TB Pharmacophore: Synthesis and Biological Evaluation against Mycobacterium tuberculosis,” Bioorganic & Medicinal Chemistry 14 (2006): 4610–26.
  • L. Alvey, S. Prado, B. S. Joanis, S. Michel, M. Koch, S. T. Cole, F. Tillequin, and Y. L. Janin, “Diversity-Oriented Synthesis of Furo[3,2-f]chromanes with Antimycobacterial Activity,” European Journal of Medicinal Chemistry 44, no. 6 (2009): 2497–505.
  • L. Bonsignore, G. Loy, D. Secci, and A. Calignano, “Synthesis and Pharmacological Activity of 2-oxo-(2H)1-Benzopyran-3-Carboxamide Derivatives,” European Journal of Medicinal Chemistry 28, no. 6 (1993): 517–20.
  • A. M. Grau, and L. J. Marco, “Friedlander Reaction on 2-Amino-3-cyano-4H-pyrans: Synthesis of Derivatives of 4H-pyran [2,3-b] Quinoline, New Tacrine Analogues,” Bioorganic & Medicinal Chemistry Letters 7 (1997): 3165–70.
  • S. J. Mohr, M. A. Chirigos, F. S. Fuhrman, and J. W. Pryor, “Pyran Copolymer as an Effective Adjuvant to Chemotherapy against a Murine Leukemia and Solid Tumor,” Cancer Research 35 (1975): 3750–4.
  • J. Skommer, D. Wlodkowic, M. Matto, M. Eray, and J. Pelkonen, “HA14-1, a Small Molecule Bcl-2 Antagonist, Induces Apoptosis and Modulates Action of Selected Anticancer Drugs in Follicular Lymphoma B Cells,” Leukemia Research 30, no. 3 (2006): 322–31.
  • W. Kemnitzer, S. Kasibhatla, S. Jiang, H. Zhang, J. Zhao, S. Jia, L. Xu, G. C. Grundy, R. Denis, N. Barriault, et al. “Discovery of 4-Aryl-4H-chromenes as a New Series of Apoptosis Inducers Using a Cell- and Caspase-Based High-Throughput Screening Assay. 2. Structure–Activity Relationships of the 7- and 5-, 6-, 8-Positions,” Bioorganic & Medicinal Chemistry Letters 15 (2005): 4745–51.
  • H. Gourdeau, L. Leblond, B. Hamelin, C. Desputeau, K. Dong, I. Kianicka, D. Custeau, C. Boudreau, L. Geerts, S. X. Cai, et al. “Antivascular and Antitumor Evaluation of 2-Amino-4-(3-bromo-4,5-dimethoxy-phenyl)-3-cyano-4H-chromenes, a Novel Series of Anticancer Agents,” Molecular Cancer Therapeutics 3 (2004): 1375–83.
  • G. A. Reynolds, and K. H. Drexhage, “New Coumarin Dyes with Rigidized Structure for Flashlamp-Pumped Dye Lasers,” Optics Communications 13, no. 3 (1975): 222–5.
  • E. R. Bissell, A. R. Mitchell, and R. Smith, “Synthesis and Chemistry of 7-Amino-4-(Trifluoromethyl)coumarin and Its Amino Acid and Peptide Derivatives,” The Journal of Organic Chemistry 45, no. 12 (1980): 2283–7.
  • E. A. Hafez, M. H. Elnagdi, A. G. Elagamey, and F. M. A. Taweel, “Nitriles in Heterocyclic Synthesis: Novel Synthesis of Benzo[c]coumarin and of Benzo[c]pyrano[3,2-c]quinoline Derivatives,” Heterocycles 26 (1987): 903–7.
  • R. Ramesh, and A. Lalitha, “PEG-Assisted Two-Component Approach for the Facile Synthesis of 5-aryl-1,2,4-triazolidine-3-thiones under Catalyst-Free Conditions,”RSC Advances 5, no. 63 (2015): 51188–92.
  • R. Ramesh, and A. Lalitha, “Synthesis of Pyran Annulated Heterocyclic Scaffolds: A Highly Convenient Protocol Using Dimethylamine,” Research on Chemical Intermediates 41, no. 10 (2015): 8009–17.
  • R. Ramesh, S. Maheswari, S. Murugesan, R. Sandhiya, and A. Lalitha, “Catalyst-Free One-Pot Synthesis and Antioxidant Evaluation of Highly Functionalized Novel 1,4-Dihydropyridine Derivatives,” Research on Chemical Intermediates 41, no. 11 (2015): 8233–43.
  • R. Ramesh, and A. Lalitha, “Facile and Green Chemistry Access to 5-aryl-1,2,4-triazolidine-3-thiones in Aqueous Medium,” ChemistrySelect 1, no. 9 (2016): 2085–9.
  • R. Ramesh, R. Madhesh, J. G. Malecki, and A. Lalitha, “Piperidine Catalyzed Four-Component Strategy for the Facile Access of Polyfunctionalized 1,4-Dihydropyridines at Ambient Conditions,” ChemistrySelect 1, no. 16 (2016): 5196–200.
  • R. Ramesh, P. Vadivel, S. Maheswari, and A. Lalitha, “Click and Facile Access of Substituted Tetrahydro-4H-chromenes Using 2-aminopyridine as a Catalyst,” Research on Chemical Intermediates 42, no. 10 (2016): 7625–36.
  • R. Ramesh, N. Nagasundaram, D. Meignanasundar, P. Vadivel, and A. Lalitha, “Glycerol Assisted Eco-friendly Strategy for the Facile Synthesis of 4,4’-(Arylmethylene)bis(3-methyl-1H-pyrazol-5-ols) and 2-aryl-2,3-dihydroquinazolin-4(1H)-Ones under Catalyst-Free Conditions,” Research on Chemical Intermediates 43, no. 3 (2017): 1767–82.
  • R. Ramesh, P. Kalisamy, J. G. Malecki, and A. Lalitha, “Metal-Free Mild Synthesis of Novel 1′H-spiro[cycloalkyl-1,2′-Quinazolin]-4′(3′H)-Ones by an Organocatalytic Cascade Reaction,” Synlett 29 (2018): 203–8.
  • R. Ramesh, S. Maheswari, M. Arivazhagan, J. G. Malecki, and A. Lalitha, “Cyanuric Chloride Catalyzed Metal-Free Mild Protocol for the Synthesis of Highly Functionalized Tetrahydropyridines,” Tetrahedron Letters 58, no. 40 (2017): 3905–9.
  • R. Ramesh, G. Sankar, J. G. Malecki, and A. Lalitha, “Carbon-SO3H Derived from Glycerol: A Green Recyclable Catalyst for Synthesis of 2,3-dihydroquinazolin-4(1H)-Ones,” Journal of the Iranian Chemical Society 15, no. 1 (2018): 1–9.
  • R. Ramesh, D. Meignanasundar, and A. Lalitha, “An Organocatalytic Novel Synthesis of Polyfunctionalized Bis-2,5-dihydrofuran-3-carboxylates via Domino-MCR Strategy,” ChemistrySelect 2, no. 31 (2017): 10210–4.
  • R. Ramesh, J. Jayamathi, C. Karthika, J. G. Malecki, and A. Lalitha, “An Organocatalytic Newer Synthetic Strategy Toward the Access of Polyfunctionalized 4H-pyrans via Multicomponent Reactions,” Polycyclic Aromatic Compounds (2018): 1. doi: 10.1080/10406638.2018.1454968
  • R. Ramesh, V. Tamilselvi, P. Vadivel, and A. Lalitha, “Innovative Green Synthesis of 4-aryl-pyrazolo[5,6]pyrano[2,3-d]pyrimidines under Catalyst-free Conditions,”Polycyclic Aromatic Compounds (2018): 1. doi: 10.1080/10406638.2018.1484780
  • R. Ramesh, M. Arivazhagan, J. G. Malecki, and A. Lalitha, “Improved One-pot, four-component Strategy to Access Functionalized Dihydropyridines by Using 4-(N,N-dimethylamino)pyridine as a Catalyst,”Synlett 29 (2018): 1897–901.
  • O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. J. Puschmann, “OLEX2: a Complete Structure Solution, refinement and Analysis Program,” Journal of Applied Crystallography 42, no. 2 (2009): 339–41.
  • G. M. Sheldrick, “A Short History of SHELX,” Acta Crystallographica. Section A, Foundations of Crystallography 64, no. Pt 1 (2008): 112–22.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.