213
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Microwave-Promoted Facile and Rapid Access to Novel Spirooxindole-furo[2,3-c]pyrazole Derivatives Using Pyridinium Ylide-Assisted Domino Reaction

, , &
Pages 63-72 | Received 30 Jan 2018, Accepted 13 Jan 2019, Published online: 27 Feb 2019

References

  • L. F. Tietze, “Domino Reactions in Organic Synthesis,” Chemical Reviews 96, no. 1 (1996): 115–36.
  • Tietze, L.F., G. Brasche, and K. Gericke, Domino Reactions in Organic Synthesis (Weinheim: Wiley-VCH, 2006).
  • D. Enders, M. R. M. Huttl, C. Grondal, and G. Raabe, “Control of Four Stereocentres in a Triple Cascade Organocatalytic Reaction,” Nature 441, no. 7095 (2006): 861–3.
  • B. Jiang, S. J. Tu, P. Kaur, W. Wever, and G. Li, “Four-Component Domino Reaction Leading to Multifunctionalized Quinazolines,” Journal of the American Chemical Society 131, no. 33 (2009): 11660–1.
  • L. R. Wen, Y. J. Shi, G. Y. Liu, and M. Li, “Modulating the Reactivity of Functionalized N, S-ketene Acetal in MCR: Selective Synthesis of Tetrahydropyridines and Thiochromeno[2,3-b]pyridines via DABCO-Catalyzed Tandem Annulations,” The Journal of Organic Chemistry 77, no. 9 (2012): 4252–60.
  • C. O. Kappe, “Controlled Microwave Heating in Modern Organic Synthesis,” Angewandte Chemie International Edition in English 43, no. 46 (2004): 6250–84.
  • A. R. Bhat, A. H. Shalla, and R. S. Dongre, “Microwave Assisted One-Pot Catalyst Free Green Synthesis of New Methyl-7-amino-4-oxo-5-phenyl-2-thioxo-2, 3, 4, 5-tetrahydro-1H-pyrano[2,3-d]pyrimidine-6-carboxylates as Potent in Vitro Antibacterial and Antifungal Activity,” Journal of Advanced Research 6, no. 6 (2015): 941–8.
  • B. Jiang, G. Zhang, N. Ma, F. Shi, S. J. Tu, P. Kaur, and G. Li, “A New Rapid Multicomponent Domino Reaction for the Formation of Functionalized Benzo[h]pyrazolo[3,4-b]Quinolines,” Organic & Biomolecular Chemistry 9, no. 10 (2011): 3834–8.
  • R. Ghahremanzadeh, Z. Rashid, A. H. Zarnani, and H. Naeimi, “A Rapid and High Efficient Microwave Promoted Multicomponent Domino Reaction for the Synthesis of Spirooxindole Derivatives,” Journal of Industrial and Engineering Chemistry 20, no. 6 (2014): 4076–84.
  • E. C. Franklin, “Heterocyclic Nitrogen Compounds. I. Pentacyclic Compounds,” Chemical Reviews 16, no. 3 (1935): 305–61.
  • F. W. Lichtenthaler, “Unsaturated O- and N-heterocycles from Carbohydrate Feedstocks,” Accounts of Chemical Research 35, no. 9 (2002): 728–37.
  • V. A. Chebanov, E. A. Muravyova, S. M. Desenko, V. I. Musatov, I. V. Knyazeva, S. V. Shishkina, O. V. Shishkin, and C. O. Kappe, “Microwave-Assisted Three-Component Synthesis of 7-aryl-2-alkylthio-4,7-dihydro-1,2,4-triazolo[1,5-a]-Pyrimidine-6-carboxamides and Their Selective Reduction,” Journal of Combinatorial Chemistry 8, no. 3 (2006): 427–34.
  • D. Das, R. Banerjee, and A. Mitra, “Bioactive and Pharmacologically Important Pyrano[2, 3-c]Pyrazoles,” Journal of Chemical and Pharmaceutical Research 6 (2014): 108–16.
  • G. Varvounis, “Pyrazol-3-ones. Part IV: Synthesis and Applications,” Advances in Heterocyclic Chemistry 98 (2009): 143–224.
  • A. Schmidt, and A. Dreger, “Recent Advances in the Chemistry of Pyrazoles. Properties, biological Activities, and Syntheses,” Current Organic Chemistry 15, no. 9 (2011): 1423–63.
  • Sivasubramaniyan Archana, Raja Ranganathan, Murugan Dinesh, Ponnusamy Arul, Alagusundaram Ponnuswamy, Patchaiah Kalaiselvi, Subbiah Chellammal, and Gopalan Subramanian, “Design, synthesis, and Antibacterial Studies of Potent Pyrazolinyltriazoles,” Research on Chemical Intermediates 43, no. 4 (2017): 2471–90.
  • K. A. Kumar, and M. Govindaraju, “Pyrazolines: Versatile Molecules of Synthetic and Pharmaceutical Applications––A Review,” International Journal of ChemTech Research 8 (2015): 313–22.
  • Ş. G. Küçükgüzel, and S. Şenkardeş, “Recent Advances in Bioactive Pyrazoles,” European Journal of Medicinal Chemistry 97 (2015): 786–815.
  • N. E. Shevchenko, “Synthesis of 3-substituted Furylethylamines,” Chemistry of Heterocyclic Compounds 35, no. 2 (1999): 164–6.
  • G. Bastian, R. Royer, and R. Cavier, “Research on Nitro-derivatives of Biological interest. 32. Comparison of Anti-bacterial and Parasiticidal Activities of 2-nitro and 3-nitrobenzofuranes Derivatives,” European Journal of Medicinal Chemistry 21 (1983): 365–7.
  • S. M. Kupchan, M. A. Eakin, and A. M. Thomas, “Tumor Inhibitors. 69. Structure-cytotoxicity Relations Among the Sesquiterpene Lactones,” Journal of Medicinal Chemistry 111 (1971): 1147–52.
  • C. Li-Chen, H. Li-Jiau, Y. Jai-Sing, L. Fang-Yu, T. Che-Ming, and K. Sheng-Chu, “Synthesis of Furopyrazole Analogs of 1-benzyl-3-(5-hydroxymethyl-2-furyl) indazole(YC-1) as Novel anti-leukemia Agents,” Bioorganic & Medicinal Chemistry Letters 15 (2007): 1732–40.
  • D. A. Horton, G. T. Bourne, and M. L. Smythe, “The Combinatorial Synthesis of Bicyclic Privileged Structures or Privileged Substructures,” Chemical Reviews 103, no. 3 (2003): 893–930.
  • H. Diirr and R. Gleiter, “Spiroconjugation,” Angewandte Chemie International Edition in English 17, (1978): 559–69.
  • J. Sun, Y. J. Xie, and C. G. Yan, “Construction of Dispirocyclopentanebisoxindoles via Self-domino Michael-aldol Reactions of 3-Phenacylideneoxindoles,” The Journal of Organic Chemistry 78, no. 17 (2013): 8354–65.
  • R. M. Williams and R. J. Cox, “Paraherquamides, brevianamides, and Asperparalines: laboratory Synthesis and Biosynthesis. An Interim Report,” Accounts of Chemical Research 36, no. 2 (2003): 127–39.
  • Y. He, T. Jiang, K. L. Kuhen, K. Wolff, H. Yin, K. Bieza, J. Caldwell, B. Bursulaya, T. Tuntland, K. Zhang, and D. Karanewsky, “Design, synthesis, and Biological Evaluations of Novel Oxindoles as HIV-1 Non-nucleoside Reverse Transcriptase Inhibitors. Part 2,” Bioorganic & Medicinal Chemistry Letters 16, (2006): 2109–12.
  • H. Pajouhesh, R. Parson, and F. D. Popp, “Potential Anticonvulsants VI: Condensation of Isatins with Cyclohexanone and Other Cyclic Ketones,” Journal of Pharmaceutical Sciences 72, no. 3 (1983): 318–21.
  • Cousins, D. J. Medicinal, Essential Oil, Culinary Herb, and Pesticidal Plants of the Labiatae (parts 1 and 2; Wallingford: CAB International, 1994).
  • A. Urzúa, J. Echeverría, M. C. Rezende, and M. Wilkens, “Antibacterial Properties of 3H-spiro[1-benzofuran-2,10-cyclohexane] derivatives from Heliotropium filifolium,” Molecules 13 (2008): 2385–93.
  • B. J. Albert, A. Sivaramakrishnan, T. Naka, N. L. Czaicki, and K. Koide, “Total Syntheses, fragmentation Studies, and Antitumor = Antiproliferative Activities of FR901464 and Its Low Picomolar Analogue,” Journal of the American Chemical Society 129, no. 9 (2007): 2648–59.
  • Y. Malpani, R. Achary, S. Y. Kim, H. C. Jeong, P. Kim, S. B. Han, M. Kim, C. K. Lee, J. N. Kim, and Y. S. Jung, “Efficient Synthesis of 3H, 3′H-spiro [benzofuran-2, 1′-Isobenzofuran]-3,3′-Dione as Novel Skeletons Specifically for Influenza Virus Type B Inhibition,” European Journal of Medicinal Chemistry 62, (2013): 534–44.
  • K. Y. Tsang and M. A. Brimble, “Synthesis of Aromatic Spiroacetals Related to γ-Rubromycin Based on a 3H-spiro[1-benzofuran-2,2′-Chromane] Skeleton,” Tetrahedron 63, no. 26 (2007): 6015–34.
  • A. Yazdani-Elah-Abadi, R. Mohebat, and M. T. Maghsoodlou, “Theophylline as the Catalyst for the Diastereoselective Synthesis of Trans-1, 2-dihydrobenzo[a]furo[2,3-c]phenazines in Water,” RSC Advances 6, no. 87 (2016): 84326–33.
  • R. Mohebat, A. Yazdani-Elah-Abadi, M. T. Maghsoodlou, and N. Hazeri, “DABCO-Catalyzed Multi-Component Domino Reactions for Green and Efficient Synthesis of Novel 3-oxo-3H-benzo[a]pyrano[2,3-c]phenazine-1-carboxylate and 3-(5-hydroxybenzo[a]phenazin-6-yl) acrylate Derivatives in Water,” Chinese Chemical Letters 28 (2017): 943–8.
  • A. Yazdani-Elah-Abadi, S. Abbasi Pour, M. Kangani, and R. Mohebat, “l-Proline Catalyzed Domino Cyclization for the Green Synthesis of Novel 1,4-dihydrobenzo[a] pyrido[2,3-c]Phenazines,” Monatshefte Für Chemie – Chemical Monthly 148, no. 12 (2017): 2135–42.
  • R. Baharfar, S. Asghari, F. Zaheri, and N. Shariati, “Three-Component Synthesis of Novel Spirooxindole–Furan Derivatives Using Pyridinium Salts,” Comptes Rendus Chimie 20, no. 4 (2017): 359–64.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.