11,389
Views
49
CrossRef citations to date
0
Altmetric
Editorial

A Review on the Recent Multicomponent Synthesis of Pyranopyrazoles

&
Pages 223-291 | Received 08 Nov 2018, Accepted 14 Feb 2019, Published online: 11 May 2019

References

  • A. Stachulski, N. Berry, A. Lilian Low, S. Moores, E. Row, D. Warhurst, I. Adagu, and J. Rossignol, “Identification of Isoflavone Derivatives as Effective Anticryptosporidial Agent in Vitro and Vivo,” Journal of Medicinal Chemistry 49, no. 4 (2006): 1450–4.
  • W. Sun, L. D. Cama, E. T. Birzin, S. Warrier, L. Locco, R. Mosley, M. L. Hammond, and S. P. Rohrer, “6H-Benzo[c]chromen-6-one Derivatives as Selective ERb Agonists,” Bioorganic & Medicinal Chemistry Letters 16, no. 6 (2006): 1468–72.
  • M. Elinson, A. Dorofeev, S. Feducovich, S. Gorbunov, R. Nasybullin, N. Stepanov, and G. Nikishin, “Electrochemically Induced Chain Transformation of Salicylaldehydes and Alkyl Cyanoacetates into Substituted 4H-Chromenes, ”Tetrahedron Letters 47, no. 43 (2006): 7629–32.
  • Green, G., J. Evans, and A. Vong, “Pyrans and their Benzo Derivatives: Applications,” in Comprehensive Heterocyclic Chemistry II, edited by A.R. Katritzky, C.W. Rees, E.P.F. Scriven, Vol. 5 (Pergamon Press: Oxford, 1995), 469.
  • J. A. Wang, O. Novaro, X. Bokhimi, T. Lopez, R. Gomez, J. Navarrete, M. E. Llanos, and E. L. Salinas, “Structural Defects and Acidic and Basics in Sol-Gel MgO,” The Journal of Physical Chemistry B 101, no. 38 (1997): 7448–51.
  • K. L. Kees, J. J. Fitzgerald, K. E. Steine, J. F. Mattes, B. Mihan, T. Tosi, D. Mondoro, and M. L. McCaleb, “New Potent Antihyperglycemic Agents in db/db Mice: Synthesis and Structure-activity Relationship Studies of (4-Substituted Benzyl)(Trifluoromethyl)pyrazoles and-Pyrazolones,” Journal of Medicinal Chemistry 39, no. 20 (1996): 3920–8.
  • M. J. Genin, C. Biles, B. J. Keiser, S. M. Poppe, S. M. Swaney, W. G. Tarpley, Y. Yagi, and D. L. Romero, “Novel 1,5-Diphenylpyrazole Nonnucleoside HIV-1 Reverse Transcriptase Inhibitors with Enhanced Activity versus the Delavirdine-Resistant P236L Mutant: Lead Identification and SAR of 3- and 4-Substituted Derivatives,” Journal of Medicinal Chemistry 43, no. 5 (2000): 1034–40.
  • S. S. Chobe, G. G. Mandawad, O. S. Yemul, S. S. Kinkar, and B. S. Dawane, “An Efficient One-Pot Synthesis of Substituted Pyrazolo [3,4 b:4',3'e]Pyridine Derivatives via the Hantzch Three Component Condensation Using Bleaching Earth Catalyst and Their InvitroAntimicrobial Evaluation,” International Journal of ChemTech Research 3 (2011): 938–43.
  • X. -H. Yang, P. -H. Zhang, Z. -M. Wang, F. Jing, Y. -H. Zhou, and L. -H. Hu, “Of Lignin Related High-Added-Value 2H,4H-Dihydro-Pyrano[2,3-c]Pyrazoles and 1H,4H-Dihydropyrano[2,3-c]Pyrazoles,” Industrial Crops and Production 52 (2014): 413–19.
  • S. Mandha, S. Siliveri, M. Alla, V. Bommena, M. Bommineni, and S. Balasubramanian, “Eco-Friendly Synthesis and Biological Evaluation of Substituted Pyrano[2,3-c]Pyrazoles,” Bioorganic & Medicinal Chemistry Letters 22, no. 16 (2012): 5272–8.
  • P. W. Smith, S. L. Sollis, P. D. Howes, P. C. Cherry, I. D. Starkey, K. N. Cobley, H. Weston, J. Scicinski, A. Merritt, A. Whittington, et al. “Dihydropyrancarboxamides Related to Zanamivir: A New Series of Inhibitors of Influenza Virus Sialidases. 1. Discovery, Synthesis, Biological Activity, and Structure Activity Relationships of 4-Guanidino- and 4-Amino-4H-pyran-6-Carboxamides,” Journal of Medicinal Chemistry 41, no. 6 (1998): 787–97.
  • M. Kidwai, S. Saxena, M. Rahman Khan, and S. Thukral, “Aqua Mediated Synthesis of Substituted 2-Amino-4H-Chromenes and in Vitro Study as Antibacterial Agents,” Bioorganic & Medicinal Chemistry Letters 15, no. 19 (2005): 4295–8.
  • S. Patil, J. Wang, X. Li, J. Chen, T. Jones, A. Hosni-Ahmed, R. Patil, W. Seibel, W. Li, and D. Miller, “New Substituted 4H-Chromenes as Anticancer Agents,” Bioorganic & Medicinal Chemistry Letters 22, no. 13 (2012): 4458–61.
  • A. Kumar, P. Lohan, D. K. Aneja, G. K. Gupta, D. Kaushik, and O. Prakash, “Design, Synthesis, Computational and Biological Evaluation of Some New Hydrazino Derivatives of DHA and Pyranopyrazoles,” European Journal of Medicinal Chemistry 50 (2012): 81–9.
  • J. W. Pavlik, V. Ervithayasuporn, J. C. MacDonald, and S. Tantayanon, “The Photochemistry of Some Pyranopyrazoles,” Arkivoc 8 (2008): 57–68.
  • K. Nicolaou, S. Snyder, T. Montagnon, and G. Vassilikogiannakis, “The Diels–Alder Reaction in Total Synthesis,” Angewandte Chemie International Edition 41, no. 10 (2002): 1668–98.
  • L. Huang, M. Hour, C. Teng, and S. Kuo, “Synthesis and Antiplatelet Activities of N-Arylmethyl-3,4-dimethylpyrano[2,3-c]pyrazol-6-one Derivatives,” Chemical & Pharmaceutical Bulletin 40, no. 9 (1992): 2547–51.
  • J.-L. Wang, D. Liu, Z.-J. Zhang, S. Shan, X. Han, S. M. Srinivasula, C. M. Croce, E. S. Alnemri, and Z. Huang, “Structure-Based Discovery of an Organic Compound That Binds Bcl-2 Protein and Induces Apoptosis of Tumor Cells,” Proceedings of the National Academy of Sciences of the United States of America 97, no. 13 (2000): 7124–9.
  • S. C. Kuo, L. J. Huang, and H. Nakamura, “Studies on Heterocyclic Compounds. 6. Synthesis and Analgesic and anti-inflammatory Activities of 3,4-Dimethylpyrano[2,3-c]pyrazol-6-one Derivatives,” Journal of Medicinal Chemistry 27, no. 4 (1984): 539–44.
  • M. E. A. Zaki, H. A. Soliman, O. A. Hiekal, and A. E. Rashad, “Pyrazolopyranopyrimidines as a Class of anti-inflammatory Agents,” Zeitschrift Für Naturforschung C 61, no. 1-2 (2006): 1–5.
  • E.-S H. El-Tamany, F. A. El-Shahed, and B. H. Mohamed, “Synthesis and Biological Activity of Some Pyrazole Derivatives,” Journal of Serbian Chemical Society 64, (1999): 21–30. https://www.shd.org.rs/JSCS/Vol64/No1.htm#Synthesis.
  • F. M. Abdelrazek, P. Metz, N. H. Metwally, and S. F. El-Mahrouky, “Synthesis and Molluscicidal Activity of New Cinnoline and Pyrano [2,3-c]pyrazole Derivatives,” Archiv Der Pharmazie 339, no. 8 (2006): 456–560.
  • K. Qvortrup, J. F. Jensen, M. S. Sørensen, I. Kouskoumvekaki, R. K. Petersen, O. Taboureau, K. Kristiansen, and T. E. Nielsen, and “Synthesis and Biological Evaluation of Dihydropyrano-[2,3-c]pyrazoles as a New Class of PPARγ Partial Agonists,” PLoS One 12, no. 2 (2017): e0162642.
  • Gesson, J., N. Fonteneau, M.Mondon, S.Charbit, H. Ficheux, and F. Schutze, U. S. Patent, 6, 965,039 B2, 2005.
  • N. Foloppe, L. Fisher, R. Howes, A. Potter, A. Robertson, and A. Surgenor, “Identification of Chemically Diverse Chk1 Inhibitors by Receptor-based Virtual Screening,” Bioorganic & Medicinal Chemistry 14, no. 14 (2006): 4792–802.
  • R. Maggi, R. Ballini, G. Sartori, and R. Sartorio, “Basic Alumina Catalyzed Synthesis of Substituted 2-Amino-2-chromenes via Three-Component Reaction,” Tetrahedron Letters 45, no. 11 (2004): 2297–9.
  • L. F. Tietze, “Domino Reactions in Organic Synthesis,” Chemical Reviews 96, no. 1 (1996): 115–36.
  • L. F. Tietze, and F. Haunert, “Domino Reaction in Organic Synthesis. An Approach to Efficiency, Elegance, Ecological Benefit, Economic Advantage and Preservation of our Resources in Chemical Transformations,” in Stimulating Concepts in Chemistry, edited by F. Votle, J. F. Stoddart, M. Shibasaki (Wiley: Weinheim, 2000), 39–64.
  • D. Enders, M. R. M. Huttl, C. Grondal, and G. Raabe, “Control of Four Stereocentres in a Triple Cascade Organocatalytic Reaction,” Nature 441, no. 7095 (2006): 861–3.
  • R. Sheldon, “Selective Catalytic Synthesis of Fine Chemicals: Opportunities and Trends,” Journal of Moleular Catalysis A 107, no. 1-3 (1996): 75–83.
  • Li, C., and T. Chan, Organic Reactions in Aqueous Media (Wiley: New York, NY, 1997).
  • P. Grieco, Organic Synthesis in Water (Blackie Academic and Professional: London, 1998).
  • K. Kandhasamy, and V. Gnanasambandam, “Multicomponent Reactions in Water,” Current Organic Chemistry 13, (2009): 11820–41.
  • K. Z. Andrade, and L. M. Alves, “Environmentally Benign Solvents in Organic Synthesis: Current Topics,” Current Organic Chemistry 9, no. 2 (2005): 195–218.
  • H. H. Otto, “Darstellung Einiger 4H‐Pyrano[2.3‐c]Pyrazolderivate,” Archiv Der Pharmazie 307, no. 6 (1974): 444–7.
  • H. H. Otto, and H. Schmelz, “Heterocyclen Durch Michael‐Reaktionen, 5. Mitt. Nucleophile Additionen an 4‐Aryliden‐Pyrazolone,” Archiv Der Pharmazie 312, no. 6 (1979): 478–86.
  • G. V. Klokol, S. G. Krivokolysko, V. D. Dyachenko, and V. P. Litvinov, “Aliphatic Aldehydes in the Synthesis of Condensed 4-Alkyl(cycloalkyl)-2-amino-3-cyano-4H-Pyrans,” Chemistry of Heterocyclic Compounds 35, no. 10 (1999): 1183–6.
  • A. Shaabani, A. Sarvary, A. H. Rezayan, and S. Keshipour, “Synthesis of Fully Substituted Pyrano[2,3-c]pyrazole Derivatives via a Multicomponent Reaction of Isocyanides,” Tetrahedron 65, no. 17 (2009): 3492–5.
  • A. S. Nagarajan, and B. S. R. Reddy, “Synthesis of Substituted Pyranopyrazoles under Neat Conditions via a Multicomponent Reaction,” Synlett 12 (2009): 2002–4.
  • A. Moshtaghi Zonouz, I. Eskandari, and H. R. Khavasi, “A Green and Convenient Approach for the Synthesis of Methyl 6-Amino-5-cyano-4-aryl-2,4-dihydropyrano[2,3-c]pyrazole-3-carboxylates via a One-Pot, Multicomponent Reaction in Water,” Tetrahedron Lett 53, no. 41 (2012): 5519–22.
  • D. Pore, P. Patil, D. Gaikwad, P. Hegade, J. Patil, and K. Undale, “Green Access to Novel Spiro Pyranopyrazole Derivatives,” Tetrahedron Letters 54, no. 44 (2013): 5876–8.
  • M. Bihani, P. P. Bora, and Gh Bez, “A Practical Catalyst-Free Synthesis of 6-Amino-4 Alkyl/aryl-3-methyl-2,4-dihydropyrano[2,3-c]pyrazole-carbonitrile in Aqueous Medium,” Journal of Chemistry (2013): Article ID 920719.
  • M. Koohshari, M. Dabiri, and P. Salehi, “Catalyst-Free Domino Reaction in Water/Ethanol: An Efficient, Regio- and Chemoselective One-Pot Multicomponent Synthesis of Pyranopyrazole Derivatives,” RSC Advances 4, no. 21 (2014): 10669–71.
  • C. Yu, C. Yao, T. Li, and X. Wang, “An Aqueous, Catalyst-Free and Three-Component Synthesis of 6-Amino-3-(Trifluoromethyl)-1,4-dihydro-1-phenyl-4-arylpyrano[2,3-c]pyrazole-5-Carbonitriles,” Research on Chemical Intermediates 40, no. 4 (2014): 1537–44.
  • M. G. Dekamin, M. Alikhani, A. Emami, H. Ghafuri, and S. Javanshir, “An Efficient Catalyst- and Solvent-Free Method for the Synthesis of Medicinally Important Dihydropyrano[2,3-c]pyrazole Derivatives Using Ball Milling Technique,” Journal of the Iranian Chemical Society 13, no. 3 (2016): 591–6.
  • K. T. Patil, D. K. Jamale, N. J. Valekar, P. T. Patil, P. P. Warekar, G. B. Kolekar, and P. V. Anbhule, “Uncatalyzed Four-component Synthesis of Pyrazolopyranopyrimidine Derivatives and Their Antituberculosis Activities,” Synthetic Communications 47, no. 2 (2017): 111–20.
  • B. Baran, O. Berezyuk, and V. Golonzhka, “Water Systems after Magnetic Field Action,” Environmental Research, Engineering and Management 38 (2006): 19–23.
  • N. Gang, L. S. St-Pierre, and M. A. Persinger, “Water Dynamics following Treatment by One Hour 0.16 Tesla Static Magnetic Fields Depend on Exposure Volume,” Water 3, (2012) : 122–31.
  • K. Higashitani, J. Oshitani, and N. Ohmura, “Effects of Magnetic Field on Water Investigated with Fluorescent Probes,” Colloids and Surfaces A 109, (1996): 167–73. DOI: 10.1016/0927-7757(95)03483-8.
  • M. Bakherad, A. Keivanloo, M. Gholizadeh, R. Doosti, and M. Javanmardi, “Using Magnetized Mater as a Solvent for a Green, Catalyst-Free, and Efficient Protocol for the Synthesis of Pyrano[2,3-c]pyrazoles and Pyrano[4',3':5,6]pyrazolo[2,3-d]Pyrimidines,” Research on Chemical Intermediates 43, no. 2 (2017): 1013–29.
  • V. Ramesh, S. Shanmugam, and N. S. Devi, “An Efficient Five-Component Synthesis of Thio Ether Containing Dihydropyrano[2,3-c]pyrazoles: A Green Domino Strategy,” New Journal of Chemistry 40, no. 12 (2016): 9993–10001.
  • H. V. Chavan, S. B. Babar, R. U. Hoval, and B. P. Bandgar, “Rapid One-Pot, Four-Component Synthesis of Pyranopyrazoles Using Heteropolyacid under Solvent-Free Condition,” Bulletin of the Korean Chemical Society 32, no. 11 (2011): 3963–6.
  • V. L. Gein, T. M. Zamaraeva, and P. A. Slepukhin, “A Novel Four-Component Synthesis of Ethyl 6-Amino-4-aryl-5-cyano-2,4-dihydropyrano[2,3-c]pyrazole-3-Carboxylates,” Tetrahedron Letters 55, no. 33 (2014): 4525–8.
  • R. Hekmatshoar, M. M. Heravi, S. Sadjadi, H. A. Oskooie, and F. F. Bamoharram, “Catalytic Performance of Preyssler Heteropolyacid, [NaP5W30O110]14− in Liquid Phase Alkylation of Phenol with 1-Octene,” Catalysis Communications 9, no. 5 (2008): 837–41.
  • A. Hafizi, A. Ahmadpour, M. M. Heravi, and F. F. Bamoharram, “The Application of Silica-Supported Preyssler HPA as a Heterogeneous and Green Catalyst for the Alkylation of Benzene,” Petroleum Science and Technology 2 (2014): 1022–7.
  • Y. B. Gu, R. P. Wei, X. Q. Ren, and J. Wang, “Cs Salts of 12-Tungstophosphoric Acid Supported on Dealuminated USY as Catalysts for Hydroisomerization of n-Heptane,” Catalysis Letters 113, no. 1-2 (2007): 41–5.
  • A. Javid, A. Khojastehnezhad, H. Eshghi, F. Moeinpour, F. F. Bamoharram, and J. Ebrahimi, “Synthesis of Pyranopyrazoles Using a Magnetically Separable Modified Preyssler Heteropoly Acid,” Organic Preparations and Procedures International 48, no. 5 (2016): 377–84.
  • A. R. Moosavi-Zare, M. A. Zolfigol, R. Salehi-Moratab, and E. Noroozizadeh, “Catalytic Application of 1-(Carboxymethyl)pyridinium Iodide on the Synthesis of Pyranopyrazole Derivatives,” Journal of Molecular Catalysis A: Chemical 415, (2016): 144–50.
  • G. M. Reddy, and J. R. Garcia, “Synthesis of Pyranopyrazoles under Eco-Friendly Approach by Using Acid Catalysis,” Journal of Heterocyclic Chemistry 54, no. 1 (2017): 89–94.
  • G. M. Reddy, J. R. Garcia, V. H. Reddy, A. K. Kumari, G. V. Zyryanov, and G. Yuvaraja, “An Efficient and Green Approach: One Pot, Multi Component, Reusable Catalyzed Synthesis of Pyranopyrazoles and Investigation of Biological Assays,” Journal of Saudi Chemical Society 23 (2019): 263–273.
  • A. R. Moosavi-Zare, H. Afshar-Hezarkhani, and M. M. Rezaei, “Tandem Four-Component Condensation Reaction of Aryl Aldehydes with Ethyl Acetoacetate, Malononitrile, and Hydrazine Hydrate Using Boric Acid in Water as an Efficient and Green Catalytic System,” Polycyclic Aromatic Compounds (2017). doi:10.1080/10406638.2017.1382541.
  • R. G. Redkin, L. A. Shemchuk, V. P. Chernykh, O. V. Shishkin, and S. V. Shishkin, “Synthesis and Molecular Structure of Spirocyclic 2-Oxindole Derivatives of 2-Amino-4H-Pyran Condensed with the Pyrazolic Nucleus,” Tetrahedron 63, no. 46 (2007): 11444–50.
  • G. Vasuki, and K. Kumaravel, “Rapid Four-Component Reactions in Water: Synthesis of Pyranopyrazoles,” Tetrahedron Letters 49, no. 39 (2008): 5636–8.
  • F. Lehmann, M. Holm, and S. Laufer, “Three-Component Combinatorial Synthesis of Novel Dihydropyrano[2,3-c]Pyrazoles,” Journal of Combinatorial Chemistry 10, no. 3 (2008): 364–7.
  • Y. M. Litvinov, A. A. Shestopalov, L. A. Rodinovskaya, and A. M. Shestopalov, “New Convenient Four-Component Synthesis of 6-Amino-2,4-dihydropyrano[2,3-c]pyrazol-5-carbonitriles and One-Pot Synthesis of 6-Aminospiro[(3H)-Indol-3,4'-pyrano[2,3-c]pyrazol]-(1H)-2-on-5′-Carbonitriles,” Journal of Combinatorial Chemistry 11, no. 5 (2009): 914–19.
  • S. Ahadi, Z. Yasaei, and A. Bazgir, “A Clean and One-Pot Synthesis of Spiroindoline-Pyranopyrazoles,” Journal of Heterocyclic Chemistry 47, no. 5 (2010): 1090–4.
  • S. H. S. Azzam, and M. A. Pasha, “Simple and Efficient Protocol for the Synthesis of Novel Dihydro-1H-pyrano[2,3-c]pyrazol-6-ones via a One-Pot Four-Component Reaction,” Tetrahedron Letters 53, no. 50 (2012): 6834–7.
  • M. Wu, Q. Feng, D. Wan, and J. Ma, “CTACl as Catalyst for Four-Component, One-Pot Synthesis of Pyranopyrazole Derivatives in Aqueous Medium,” Synthetic Communications 43, no. 12 (2013): 1721–6.
  • S. Pal, Md N. Khan, Sh Karamthulla, S. Abbas, and L. H. Choudhury, “One-Pot Four-Component Reaction for the Efficient Synthesis of Spiro[indoline-3,4'-pyrano[2,3-c]pyrazole]-3'-carboxylate Derivatives,” Tetrahedron Letters 54, no. 40 (2013): 5434–40.
  • H. Kiyania, H. A. Samimi, F. Ghorbani, and S. Esmaieli, “One-Pot, Four-Component Synthesis of Pyrano[2,3-c]pyrazoles Catalyzed by Sodium Benzoate in Aqueous Medium,” Current Chemistry Letters 2, (2013) : 197–206.
  • K. Th. Jayabal, and P. Paramasivan, “An Expedient Four-component Domino Protocol for the Regioselective Synthesis of Highly Functionalized Pyranopyrazoles and Chromenopyrazoles via Nitroketene-N,S-acetal Chemistry under Solvent-Free Condition,” Tetrahedron Letters 55, no. 12 (2014): 2010–14.
  • M. J. Daly, and B. J. Price, Progress in Medicinal Chemistry in Ellis, Vol. 20, edited by G. P. West (Elsevier: Amsterdam, 1983), 337.
  • Y. Ootsuka, H. Morita, and H. Mori. Jpn. Kokai Tokyo Koho JP 07157465A2, 1995.
  • K. P. Moder, Eur. Pat. Appl EP 515121 A1, 1992.
  • M. V. Dmitriev, P. S. Silaichev, T. V. Sal’nikova, P. V. Melyukhin, and A. N. Maslivets, “Three-Component Spiro Heterocyclization of 1H-pyrrole-2,3-diones with Malononitrile and Pyrazolones. Crystal and Molecular Structure of a Spiro[pyrano[2,3-c]-Pyrazole-4,3′-Pyrrole],” Russian Journal of Organic Chemistry 51, no. 6 (2015): 884–7.
  • B. M. Chougala, S. Samundeeswari, M. Holiyachi, L. A. Shastri, S. Dodamani, S. Jalalpure, S. R. Dixit, Sh, D. Joshi, and V. A. Sunagar, “Synthesis, Characterization and Molecular Docking Studies of Substituted 4-Coumarinylpyrano[2,3-c]pyrazole Derivatives as Potent Antibacterial and anti-inflammatory Agents,” European Journal of Medicinal Chemistry 125, (2017): 101–16.
  • V. L. Gein, T. M. Zamaraeva, and P. A. Slepukhin, “Diethyl Oxalacetate Sodium Salt as a Reagent to Obtain Functionalized Spiro[indoline-3,4’-pyrano[2,3-c]pyrazoles],” Tetrahedron Letter 58, no. 2 (2017): 134–6.
  • S. Kanchithalaivan, S. Sivakumar, R. R. Kumar, P. Elumalai, Q. N. Ahmed, and A. K. Padala, “Four-Component Domino Strategy for the Combinatorial Synthesis of Novel 1,4-Dihydropyrano[2,3-c]pyrazol-6-Amines,” ACS Combinatorial Science 15, no. 12 (2013): 631–8.
  • A. Khazaei, M. A. Zolfigol, F. Karimitabar, I. Nikokar, and A. R. Moosavi-Zare, “N,2-Dibromo-6-chloro-3,4-dihydro-2H-benzo[e][1,2,4] thiadiazine-7-sulfonamide 1,1-dioxide: An Efficient and Homogeneous Catalyst for One-pot Synthesis of 4H-Pyran, Pyranopyrazole and Pyrazolo[1,2-b]phthalazine Derivatives under Aqueous Media,” RSC Advances 5, no. 87 (2015): 71402–12.
  • M. Beerappa, and K. Shivashankar, “Four-Component Synthesis of Highly Functionalized Pyrano[2,3-c]pyrazoles from Benzyl Halides,” Synthetic Communications 48, no. 2 (2018): 146–54.
  • M. B. Madhusudana Reddy, V. P. Jayashankara, and M. A. Pasha, “Glycine-Catalyzed Efficient Synthesis of Pyranopyrazoles via One-Pot Multicomponent Reaction,” Synthetic Communications 40, (2010): 2930–4.
  • Y. A. Tayade, S. A. Padvi, Y. B. Wagh, and D. S. Dalal, “β-Cyclodextrin as a Supramolecular Catalyst for the Synthesis of Dihydropyrano[2,3-c]pyrazole and Spiro[indoline-3,4’-pyrano[2,3-c]pyrazole] in Aqueous Medium,” Tetrahedron Letters 56, no. 19 (2015): 2441–7.
  • K. Kanagaraj, and K. Pitchumani, “Solvent-Free Multicomponent Synthesis of Pyranopyrazoles: Per-6-amino-β-cyclodextrin as a Remarkable Catalyst and Host,” Tetrahedron Letters 51, no. 25 (2010): 3312–16.
  • A. Siddekha, A. Nizam, and M. A. Pasha, “An Efficient and Simple Approach for the Synthesis of Pyranopyrazoles Using Imidazole (Catalytic) in Aqueous Medium, and the Vibrational Spectroscopic Studies on 6-Amino-4-(4'-methoxyphenyl)-5-cyano-3-methyl-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazole Using Density Functional Theory,” Spectrochimica Acta, Part A 81 (2011): 431–40.
  • G. Brahmachari, and B. Banerjee, “Facile and One-pot Access to Diverse and Densely Functionalized 2-Amino-3-cyano-4H-pyrans and Pyran-annulated Heterocyclic Scaffolds via an Eco-Friendly Multicomponent Reaction at Room Temperature Using Urea as a Novel Organo-Catalyst,” ACS Sustainable Chemistry & Engineering 2, no. 3 (2014): 411–22.
  • S. Gogoi, and C.-G. Zhao, “Organocatalyzed Enantioselective Synthesis of 6-Amino-5-cyanodihydropyrano[2,3-c]Pyrazoles,” Tetrahedron Letters 50, no. 19 (2009): 2252–5.
  • H. Quan, X. Zhang, H. Lu, and Zh Huang, “Synthesis and Acid Solution Properties of a Novel Betaine Zwitterionic Surfactant,” Central Europen Journal of Chemistry 10 (2012) : 1624–32.
  • D. P. Acharya, and H. Kunieda, “Wormlike Micelles in Mixed Surfactant Solutions,” Advances in Colloid and Interface Science 123 (2006): 401–13.
  • E. Sarmiento-Gomez, D. Lopez-Diaz, and R. Castillo, “Microrheology and Characteristic Lengths in Wormlike Micelles Made of a Zwitterionic Surfactant and SDS in Brine,” The Journal of Physical Chemistry B 114, no. 38 (2010): 12193–202.
  • F. Tamaddon, and M. Alizadeh, “A Four-component Synthesis of Dihydropyrano[2,3-c]pyrazoles in a Dew Water-Based Worm-Like Micellar Medium,” Tetrahedron Letters 55, no. 26 (2014): 3588–91.
  • M. A. Zolfigol, M. Tavasoli, A. R. Moosavi-Zare, P. Moosavi, H. G. Kruger, M. Shiri, and V. Khakyzadeh, “Synthesis of Pyranopyrazoles Using Isonicotinic Acid as a Dual and Biological Organocatalyst,” RSC Advances 3, no. 48 (2013): 25681–5.
  • R. D. Kamble, B. S. Dawane, O. S. Yemul, A. B. Kale, and S. D. Patil, “Bleaching Earth Clay (pH 12.5): a Green Catalyst for Rapid Synthesis of Pyranopyrazole Derivatives via a Tandem Three-Component Reaction,” Research on Chemical Intermediates 39, no. 8 (2013): 3859–66.
  • M. M. Heravi, F. Mousavizadeh, N. Ghobadi, and M. Tajbakhsh, “A Green and Convenient Protocol for the Synthesis of Novel Pyrazolopyranopyrimidines via a One-pot, Four-component Reaction in Water,” Tetrahedron Letters 55, no. 6 (2014): 1226–8.
  • A. S. Waghmare, and Sh. S. Pandit, “DABCO Catalyzed Rapid One-pot Synthesis of 1,4-Dihydropyrano[2,3-c]pyrazole Derivatives in Aqueous Media,” Journal of Saudi Chemistry Society 21, no. 3 (2017): 286–90.
  • E. Safari, and A. Hasaninejad, “One-pot, Multicomponent Synthesis of Novel Bis-Spiro Pyranopyrazole Derivatives in the Presence of DABCO as an Efficient and Reusable Solid Base Catalyst,” Organic Supramolecular Chemistry 3 (2018): 3529–3533.
  • H. R. Shaterian, and M. Kangani, “Synthesis of 6-Amino-4-aryl-3-methyl-1,4-dihydropyrano- [2,3-c]pyrazole-5-carbonitriles by Heterogeneous Reusable Catalysts,” Research on Chemical Intermediates 40, no. 5 (2014): 1997–2005.
  • S. Ambethkar, V. Padmini, and N. Bhuvanesh, “A Green and Efficient Protocol for the Synthesis of Dihydropyrano [2,3-c]pyrazole Derivatives via a One-pot, Four-component Reaction by Grinding Method,” Journal of Advanced Research 6, no. 6 (2015): 975–85.
  • R.-Y. Guo, Z.-M. An, L.-P. Mo, S.-T. Yang, H.-X. Liu, S.-X. Wang, and Z.H. Zhang, “Meglumine Promoted One-pot, Four-component Synthesis of Pyranopyrazole Derivatives,” Tetrahedron 69, no. 47 (2013): 9931–8.
  • M. Kangani, N. Hazeri, M. T. Mghsoodlou, S. M. Habibi-Khorasani, and S. Salahi, “Green Synthesis of 1,4-Dihydropyrano[2,3-c]pyrazole Derivatives Using Maltose as Biodegradable Catalyst,” Research on Chemical Intermediates 41, no. 4 (2015): 2513–19.
  • M. Kangani, N. Hazeri, M. T. Maghsoodlou, Kh Khandan-Barani, M. Kheyrollahi, and F. Nezhadshahrokhabadi, “Green Procedure for the Synthesis of 1,4-Dihydropyrano[2,3-c]pyrazoles Using Saccharose,” Journal of the Iranian Chemical Society 12, no. 1 (2015): 47–50.
  • Ch-F. Zhou, J.-J. Li, and W.-K. Su, “Morpholine Triflate Promoted One-pot, Four-component Synthesis of Dihydropyrano[2,3-c]Pyrazoles,” Chinese Chemical Letters 27, no. 11 (2016): 1686–90.
  • K. S. Dalal, Y. A. Tayade, Y. B. Wagh, D. R. Trivedi, D. S. Dalal, and B. L. Chaudhari, “Bovine Serum Albumin Catalyzed One-pot, Three-component Synthesis of Dihydropyrano[2,3-c]pyrazole Derivatives in Aqueous Ethanol,” RSC Advances 6, no. 18 (2016): 14868–79.
  • R. Ghorbani-Vaghei, and S. M. Malaekehpoor, “N-Bromosulfonamides Catalyzed Synthesis of New Spiro[indoline-3,4'-pyrano[2,3-c]pyrazole] Derivatives,” Journal of Heterocyclic Chemistry 54, no. 1 (2017): 465–72.
  • A. R. Moosavi-Zare, M. A. Zolfigol, and A. Mousavi-Tashar, “Synthesis of Pyranopyrazole Derivatives by in Situ Generation of Trityl Carbocation under Mild and Neutral Media,” Research on Chemical Intermediates 42, no. 10 (2016): 7305–12.
  • M. Fatahpour, F. N. Sadeh, N. Hazeri, M. T. Maghsoodlou, and M. Lashkari, “Aspirin: An Efficient Catalyst for Synthesis of Bis(pyrazol-5-ols), Dihydropyrano[2,3-c]pyrazoles and Spiropyranopyrazoles in an Environmentally Benign Manner,” Journal of the Iranian Chemical Society 14, no. 9 (2017): 1945–56.
  • Lu Zh, J. Xiao, D. Wang, and Y. Li, “An Efficient One-Pot Five-Component Tandem Sequential Approach for the Synthesis of Pyranopyrazole Derivatives via Suzuki Coupling and Multicomponent Reaction,” Asian Journal of Organic Chemistry 4, (2015) : 482–6.
  • S. Y. Ebrahimipour, Z. R. Ranjabr, E. T. Kermani, B. P. Amiri, H. Amiri Rudbari, A. Sacca, and F. Hoseinzade, “A Mixed-Ligand Ternary Complex of Nickel(II): Synthesis, Characterization and Catalytic Investigation for the Synthesis of Pyranopyrazoles,” Transition Metal Chemistry 40, no. 1 (2015): 39–45.
  • K. K. Gangu, S. Maddila, S. N. Maddila, and S. B. Jonnalagadda, “Novel Iron Doped Calcium Oxalates as Promising Heterogeneous Catalysts for One-pot Multicomponent Synthesis of Pyranopyrazoles,” RSC Advances 7, no. 1 (2017): 423–32.
  • M. Bihani, P. P. Bora, G. Bez, and H. Askari, “Amberlyst A21 Catalyzed Chromatography-Free Method for Multicomponent Synthesis of Dihydropyrano[2,3-c]pyrazoles in Ethanol,” ACS Sustainable Chemistry & Engineering 1, no. 4 (2013): 440–7.
  • M. A. Chaudhari, J. B. Gujar1, D. S. Kawade, N. R. Jogdand, and M. S. Shingare, “A Highly Efficient and Sustainable Synthesis of Dihydropyrano[2,3-c]pyrazoles Using Polystyrene Supported p-Toluenesulfonic Acid as Reusable Catalyst,” Cogent Chemistry 1 (2015): 1063830.
  • K. Karnakar, K. Ramesh, K. H. V. Reddy, B. S. P. A. Kumar, J. B. Nanubonula, and Y. V. D. Nageswar, “A Novel One-Pot Four-Component Reaction for the Efficient Synthesis of Spiro[indoline-3,4'-pyrano[2,3-c]pyrazole]-3'-carboxylate and Trifluoromethylated Spiro[indole-3,4'-pyrano[2,3-c]pyrazole] Derivatives Using Recyclable PEG-400,” New Journal of Chemistry 39, no. 11 (2015): 8978–83.
  • V. Singh, S. Kaur, V. Sapehiyia, J. Singh, and G. L. Kad, “Microwave Accelerated Preparation of [bmim][HSO4] Ionic Liquid: An Acid Catalyst for Improved Synthesis of Coumarins,” Catalysis Communications 6, no. 1 (2005): 57–60.
  • R. Zhang, X. Meng, Z. Liu, J. Meng, and C. Xu, “Isomerization of n-Pentane Catalyzed by Acidic Chloroaluminate Ionic Liquids,” Industrial & Engineering Chemistry Research 47, no. 21 (2008): 8205–10.
  • A. R. Hajipour, F. Rafiee, and A. E. Ruoho, “Oxidation of Benzylic Alcohols to Their Corresponding Carbonyl Compounds Using KIO4 in Ionic Liquid by Microwave Irradiation,” Synthetic Communications 36, no. 17 (2006): 2563–8.
  • A. R. Hajipour, F. Rafiee, and A. E. Ruoho, “Facile and Selective Oxidation of Benzylic Alcohols to Their Corresponding Carbonyl Compounds with Sodium Nitrate in the Presence of Brønsted Acidic Ionic Liquids,” Synlett 2007, no. 7 (2007): 1118–20.
  • J. M. Khurana, B. Nand, and S. Kumar, “Rapid Synthesis of Polyfunctionalized Pyrano[2,3-c]pyrazoles via Multicomponent Condensation in Room-Temperature Ionic Liquids.” Synthetic Communications 41, (2011): 405–10.
  • J. Ebrahimi, A. Mohammadi, V. Pakjoo, E. Bahramzade, and A. Habibi, “Highly Efficient Solvent-Free Synthesis of Pyranopyrazoles by a Brønsted-Acidic Ionic Liquid as a Green and Reusable Catalyst,” Journal of Chemical Sciences 124, no. 5 (2012): 1013–17.
  • A. R. Moosavi-Zare, M. A. Zolfigol, E. Noroozizadeh, M. Tavasoli, V. Khakyzadeh, and A. Zare, “Synthesis of 6-Amino-4-(4-methoxyphenyl)-5-cyano-3-methyl-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazoles Using Disulfonic Acid Imidazolium Chloroaluminate as a Dual and Heterogeneous Catalyst,” New Journal of Chemistry 37, no. 12 (2013): 4089–94.
  • H. Veisi, A. A. Manesh, N. Khankhani, and R. Ghorbani-Vaghei, “Protic Ionic Liquid [TMG][Ac] as an Efficient, Homogeneous and Recyclable Catalyst for One-Pot Four-Component Synthesis of 2H-Indazolo[2,1-b]phthalazine-triones and Dihydro-1H-pyrano[2,3-c]pyrazol-6-Ones,” RSC Advances 4, no. 48 (2014): 25057–62.
  • D. Habibi, A. Shamsian, and D. Nematollahi, “Synthesis of Pyranopyrazoles, Benzopyrans, Amino-2-chromenes and Dihydropyrano[c]chromenes Using Ionic Liquid with Dual Brønsted Acidic and Lewis Basic Sites,” Chemical Papers 69 (2015): 586–95.
  • A. R. Hajipour, M. Karimzadeh, and H. Tavallaei, “Fast Synthesis of Pyrano[2,3-c]pyrazoles: Strong Effect of Brönsted and Lewis Acidic Ionic Liquids,” Journal of the Iranian Chemical Society 12, no. 6 (2015): 987–91.
  • M. Mamaghani, R. Hossein Nia, F. Shirini, Kh Tabatabaeian, and M. Rassa, “An Efficient and Eco-friendly Synthesis and Evaluation of Antibactrial Activity of Pyrano[2,3-c]pyrazole Derivatives,” Medicinal Chemistry Research 24, no. 5 (2015): 1916–26.
  • P. Farokhian, M. Mamaghani, N. O. Mahmoodi, and Kh Tabatabaeian, “A Green and Practical Method for the Synthesis of Novel Pyrano[2,3-c]pyrazoles and Bis-pyrano[2,3-c]pyrazoles Using Sulfonic Acid-functionalized Ionic Liquid,” Journal of the Iranian Chemical Society 15, no. 1 (2018): 11–16.
  • M. Zakeri, M. M. Nasef, T. Kargaran, A. Ahmad, E. Abouzari-Lotf, and J. Asadi, “Synthesis of Pyrano[2,3-c]pyrazoles by Ionic Liquids under Green and Eco-safe Conditions,” Research on Chemical Intermediates 43, no. 2 (2017): 717–28.
  • F. Rigi, and H. R. Shaterian, “Prompted One-pot Four-component Synthesis of Pyrazolopyranopyrimidines, 3-Methyl-4-aryl-4,5-dihydro-1H-pyrano[2,3-c]pyrazol-6-ones, and 1,6-Diamino-2-oxo-1,2,3,4-tetrahydropyridine-3,5-Dicarbonitriles,” Polycyclic Aromatic Compounds 37, no. 4 (2017): 314–26.
  • E. L. Smith, A. P. Abbott, and K. S. Ryder, “Deep Eutectic Solvents (DESs) and Their Applications,” Chemical Reviews 114, no. 21 (2014): 11060–82.
  • M. R. Bhosle, L. D. Khillare, S. T. Dhumal, and R. A. Mane, “A Facile Synthesis of 6-Amino-2H,4H-pyrano[2,3-c]pyrazole-5-4 Carbonitriles in Deep Eutectic Solvent,” Chinese Chemical Letters 27, no. 3 (2016): 370–4.
  • A. Moshtaghi Zonouz, and D. Moghani, “Green and Highly Efficient Synthesis of Pyranopyrazoles in Choline Chloride/urea Deep Eutectic Solvent,” Synthetic Communications 46, no. 3 (2016): 220–5.
  • M. Gholami Dehbalaei, N. Foroughifar, H. Pasdar, A. Khajeh-Amiri, N. Foroughifar, and M. Alikarami, “Choline Chloride Based Thiourea Catalyzed Highly Efficient, Eco-friendly Synthesis and anti-bacterial Evaluation of Some New 6-Amino-4-aryl-2,4-dihydro-3-phenylpyrano[2,3-c]pyrazole-5-carbonitrile Derivatives,” Research on Chemical Intermediates, 43, no. 5 (2017): 3035–51.
  • V. Polshettiwar, and R. S. Varma, “Green Chemistry by Nano-Catalysis,” Green Chemistry 12, no. 5 (2010): 743–54.
  • M. Babaie, and H. Sheibani, “Nanosized Magnesium Oxide as a Highly Effective Heterogeneous Base Catalyst for the Rapid Synthesis of Pyranopyrazoles via a Tandem Four-component Reaction,” Arabian Journal of Chemistry 4, no. 2 (2011): 159–62.
  • M. A. E. Aleem, and A. A. El-Remaily, “Synthesis of Pyranopyrazoles Using Magnetic Fe3O4 Nanoparticles as Efficient and Reusable Catalyst,” Tetrahedron 70 (2014) : 2971–5.
  • K. Pradhan, S. Paul, and A. R. Das, “Magnetically Retrievable Nano Crystalline CuFe2O4 Catalyzed Multicomponent Reaction: A Facile and Efficient Synthesis of Functionalized Dihydropyrano[2,3-c]pyrazole, Pyrano[3,2-c]coumarin and 4H-chromene Derivatives in Aqueous Media,” Catalysis Science & Technology 4, no. 3 (2014): 822–31.
  • H. R. Shaterian, and K. Azizi, “Mild, Four-component Synthesis of 6-Amino-4-aryl-3-methyl-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles Catalyzed by Titanium Dioxide Nano-Sized Particles,” Research on Chemical Intermediates 40, no. 2 (2014): 661–7.
  • A. Saha, S. Payra, and S. Banerjee, “One-pot Multicomponent Synthesis of Highly Functionalized Bio-active Pyrano[2,3-c]pyrazole and Benzylpyrazolyl Coumarin Derivatives Using ZrO2 Nanoparticles as a Reusable Catalyst,” Green Chemistry 17, no. 5 (2015): 2859–66.
  • Farid Moeinpour, and Amir Khojastehnezhad, “Cesium Carbonate Supported on Hydroxyapatite Coated Ni0.5Zn0.5Fe2O4 Magnetic Nanoparticles as an Efficient and Green Catalyst for the Synthesis of Pyrano[2,3-c]Pyrazoles,” Chinese Chemical Letters 26, no. 5 (2015): 575–9.
  • S. Yadav, and J. M. Khurana, “Cinnamomum tamala Leaf Extract-Mediated Green Synthesis of Ag Nanoparticles and Their Use in Pyranopyrazles Synthesis,” Chinese Chemical Letters 36, no. 7 (2015): 1042–6.
  • A. V. Borhade, and B. K. Uphade, “ZnS Nanoparticles as an Efficient and Reusable Catalyst for Synthesis of 4H-pyrano[2,3-c]Pyrazoles,” Journal of the Iranian Chemical Society 12, no. 6 (2015): 1107–13.
  • M. Abdollahi-Alibeik, A. Moaddeli, and K. Masoomi, “BF3 Bonded Nano Fe3O4 (BF3/MNPs): an Efficient Magnetically Recyclable Catalyst for the Synthesis of 1,4-Dihydropyrano[2,3-c]pyrazole Derivatives,” RSC Advances 5, no. 91 (2015): 74932–9.
  • E. Soleimani, M. Jafarzadeh, P. Norouzi, J. Dayou, C. S. Sipaut, R. F. Mansa, and P. Saei, “Synthesis of Pyranopyrazoles Using Magnetically Recyclable Heterogeneous Iron Oxide-Silica Core-Shell Nanocatalyst,” Journal of the Chinese Chemical Society 62, no. 12 (2015): 1155–62.
  • D. Azarifar, and Y. Abbasi, “Sulfonic Acid-Functionalized Magnetic Fe3-xTixO4 Nanoparticles: New Recyclable Heterogeneous Catalyst for One-pot Synthesis of Tetrahydrobenzo[b]pyrans and Dihydropyrano[2,3-c]pyrazole Derivatives,” Synthetic Communications 46, no. 9 (2016): 745–58.
  • S. Sadjadi, M. M. Heravi, and M. Daraie, “Heteropolyacid Supported on Amine-Functionalized Halloysite Nano Clay as an Efficient Catalyst for the Synthesis of Pyrazolopyranopyrimidines via Four-component Domino Reaction,” Research on Chemical Intermediates 43, no. 4 (2017): 2201–14.
  • J. Safari, and M. Ahmadzadeh, “ “Zwitterionic Sulfamic Acid Functionalized Nanoclay: A Novel Nanocatalyst for the Synthesis of Dihydropyrano[2,3-c]pyrazoles and Spiro[indoline-3,4´-Pyrano[2,3-c]pyrazole] Derivatives,” Journal of the Taiwan Institute of Chemical Engineers 74 (2017) : 14–24.
  • M. Fatahpour, F. Noori Sadeh, N. Hazeri, M. T. Maghsoodlou, M. S. Hadavi, and S. Mahnaei, “Ag/TiO2 Nano-Thin Films as Robust Heterogeneous Catalyst for One-pot, Multicomponent Synthesis of Bis(pyrazol-5-ol) and Dihydropyrano[2,3-c]pyrazole Analogs,” Journal of Saudi Chemical Society 21, no. 8 (2017): 998–1006.
  • A. Dandia, S. L. Gupta, A. Indora, P. Saini, V. Parewa, and K. S. Rathore, “Ag NPs Decked GO Composite as a Competent and Reusable Catalyst for ‘ON WATER’ Chemoselective Synthesis of Pyrano[2,3-c:6,5-c']dipyrazol]-2-Ones,” Tetrahedron Letters 58, no. 12 (2017): 1170–5.
  • F. Moeinpour, and A. Khojastehnezhad, “Polyphosphoric Acid Supported on Ni0.5Zn0.5Fe2O4 Nanoparticles as a Magnetically-Recoverable Green Catalyst for the Synthesis of Pyranopyrazoles,” Arabian Journal of Chemistry 10 (2017): S3468–S74.
  • Kh G. Patel, N. M. Misra, R. H. Vekariya, and R. R. Shettigar, “One-Pot Multicomponent Synthesis in Aqueous Medium of 1,4-Dihydropyrano[2,3-c]pyrazole-5-carbonitrile and Derivatives Using a Green and Reusable Nano-SiO2 Catalyst from Agricultural Waste,” Research on Chemical Intermediates 44, no. 1 (2018): 289–304.
  • A. R. H. Moosavi‐Zare, H. Goudarziafshar, and Kh Saki, “Synthesis of Pyranopyrazoles Using Nano‐Fe‐[Phenylsalicylaldiminemethylpyranopyrazole]Cl2 as a New Schiff Base Complex and Catalyst,” Applied Organometallic Chemistry 32 (2018): e3968.
  • R. Ghorbani‐Vaghei, and V. Izadkhah, “Preparation and Characterization of Hexamethylenetetramine‐functionalized Magnetic Nanoparticles and Their Application as Novel Catalyst for the Synthesis of Pyranopyrazole Derivatives,” Applied Organometallic Chemistry 32 (2018): e4025.
  • M. Arghan, N. Koukabi, and E. Kolvari, “Polyvinyl Amine as a Modified and Grafted Shell for Fe3O4 Nanoparticles: as a Strong Solid Base Catalyst for the Synthesis of Various Dihydropyrano[2,3-c]pyrazole Derivatives and the Knoevenagel Condensation,” Journal of Saudi Chemical Society 23, (2018): 150–61.
  • Z. Hajizadeh, and A. Maleki, “Poly(ethylene Imine)-Modified Magnetic Halloysite Nanotubes: A Novel, Efficient and Recyclable Catalyst for the Synthesis of Dihydropyrano[2,3-c]pyrazole Derivatives,” Molecular Catalysis 460, (2018) : 87–93.
  • M. Jafari Nasab, A. R. Kiasat, and R. Zarasvandi, “β-Cyclodextrin Nanosponge Polymer: a Basic and Eco-Friendly Heterogeneous Catalyst for the One-Pot Four-Component Synthesis of Pyranopyrazole Derivatives under Solvent-Free Conditions,” Reaction Kinetics, Mechanisms and Catalysis 124, no. 2 (2018): 767–78.
  • N. Rahman, G. S. Nongthombam, J. W. S. Rani, R. Nongrum, G. K. Kharmawlong, and R. Nongkhlaw, “An Environment-Friendly Magnetic Organo-Nanomaterial as a Potent Catalyst in Synthesis of Pyranopyrazole Derivatives,” Current Organocatalysis 5, no. 2 (2018): 150–61.
  • R. A. Rather, and Z. N. Siddiqui, “Synthesis, Characterization and Application of Nd-Salen Schiff Base Complex Immobilized Mesoporous Silica in Solvent Free Synthesis of Pyranopyrazoles,” Journal of Organomettallic Chemistry 868 (2018): 164–74.
  • M. N. Elinson, A. S. Dorofeev, F. M. Miloserdov, and G. I. Nikishin, “Electrocatalytic Multicomponent Assembling of Isatins, 3-Methyl-2-pyrazolin-5-ones and Malononitrile: Facile and Convenient Way to Functionalized Spirocyclic[indole-3,4'-pyrano[2,3-c]pyrazole] System,” Molecular Diversity 13, no. 1 (2009): 47–52.
  • P. Shukla, A. Sharma, S. Anthal, and R. Kant, “Synthesis of Functionalized Pyrazolopyran Derivatives: Comparison of Two-step vs. One-step vs. Microwave-Assisted Protocol and X-ray Crystallographic Analysis of 6-Amino-1,4-dihydro-3-methyl-4-phenylpyrano[2,3-c]pyrazole-5-Carbonitrile,” Bulletin of Materials Science 38, no. 5 (2015): 1119–27.
  • A. Sharma, R. Chowdhury, S. Dash, B. Pallavi, and P. Shukla, “Fast Microwave Assisted Synthesis of Pyranopyrazole Derivatives as New Anticancer Agents,” Current Microwave Chemistry 3, no. 1 (2016): 78–84.
  • N. J. Parmar, H. A. Barad, B. R. Pansuriya, and N. P. Talpada, “A Highly Efficient, Rapid One-pot Synthesis of Some New Heteroaryl Pyrano[2,3-c]pyrazoles in Ionic Liquid under Microwave-Irradiation,” RSC Advances 3, no. 21 (2013): 8064–70.
  • R. Sharifi Aliabadi, and N. O. Mahmoodi, “Green and Efficient Synthesis of Pyranopyrazoles Using [bmim][OH-] as an Ionic Liquid Catalyst in Water under Microwave Irradiation and Investigation of Their Antioxidant Activity,” RSC Advances 6, no. 89 (2016): 85877–84.
  • A. Dandia, V. Parewa, A. K. Jain, and K. S. Rathore, “Step-Economic, Efficient, ZnS Nanoparticle-Catalyzed Synthesis of Spirooxindole Derivatives in Aqueous Medium via Knoevenagel Condensation Followed by Michael Addition,” Green Chemistry 13, no. 8 (2011): 2135–45.
  • Y. Zou, Y. Hu, H. Liu, and D. Shi, “Rapid and Efficient Ultrasound-assisted Method for the Combinatorial Synthesis of Spiro[indoline-3,4′-Pyrano[2,3-c]pyrazole] Derivatives,” ACS Combinatorial Science 14, no. 1 (2012): 38–43.
  • K. Ablajan, W. Liju, Y. Kelimu, and F. Jun, “Cerium Ammonium Nitrate (CAN)-Catalyzed Four-component One-pot Synthesis of Multi-substituted Pyrano[2,3-c]pyrazoles under Ultrasound Irradiation,” Molecular Diversity 17, no. 4 (2013): 693–700.
  • J. B. Gujar, M. A. Chaudhari, D. S. Kawade, and M. S. Shingare, “Molecular Sieves: An Efficient and Reusable Catalyst for Multicomponent Synthesis of Dihydropyrano [2,3-c] pyrazole Derivatives,” Tetrahedron Letters 55, no. 44 (2014): 6030–3.
  • N. Shabalala, R. Pagadala, and S. B. Jonnalagadda, “Ultrasonic-Accelerated Rapid Protocol for the Improved Synthesis of Pyrazoles.” Ultrasonics Sonochemistry 27 (2015): 423–9.
  • S. Maddila, S. Gorle, S. Shabalala, O. Oyetade, S. N. Maddila, P. Lavanya, and S. B. Jonnalagadda, “Ultrasound Mediated Green Synthesis of Pyrano[2,3-c]pyrazoles by Using Mn Doped ZrO2,” Arabian Journal of Chemistry (2016). doi:10.1016/j.arabjc.2016.04.016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.