191
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Additive Free Greener Synthesis of 1,2-Disubstituted Benzimidazoles Using Aqueous Extract of Acacia concinna Pods as an Efficient Surfactant Type Catalyst

, &
Pages 1263-1273 | Received 04 Jul 2019, Accepted 17 Sep 2019, Published online: 14 Oct 2019

References

  • F. S. Sariaslani, and J. P. N. Rosazza, “Biocatalysis in Natural Products Chemistry,” Enzyme and Microbial Technology 6, no. 6 (1984): 242–53.
  • F. Baldassarre, G. Bertoni, C. Chiappe, and F. Marioni, “Preparative Synthesis of Chiral Alcohols by Enantioselective Reduction with Daucus carota Root as Biocatalyst,” Journal of Molecular Catalysis B: Enzymatic 11, no. 1 (2000): 55–8.
  • K. M. Koeller, and C. H. Wong, “Enzymes for Chemical Synthesis,” Nature 409, no. 6817 (2001): 232–40.
  • V. Polshettiwar, and R. S. Varma, “Aqueous Microwave Chemistry: A Clean and Green Synthetic Tool for Rapid Drug Discovery,” Chemical Society Reviews 37, no. 8 (2008): 1546–57.
  • Y. Naoshima, and Y. Akakabe, “Biotransformation of Aromatic Ketones with Cell Cultures of Carrot, Tobacco and Gardenia,” Phytochemistry 30, no. 11 (1991): 3595–7.
  • Y. Naoshima, Y. Akakabe, and F. Watanabe, “Biotransformation of Acetoacetic Esters with Immobilized Cells of Nicotiana tabacum,” Agricultural and Biological Chemistry 53, no. 2 (1989): 545–7.
  • J. S. Yadav, S. Nanda, P. T. Reddy, and A. B. Rao, “Efficient Enantioselective Reduction of Ketones with Daucus carota Root,” The Journal of Organic Chemistry 67, no. 11 (2002): 3900–3.
  • J. S. Yadav, P. T. Reddy, and S. R. Hashim, “Efficient Synthesis of Optically Active 2-Azido-1-Arylethanols via Oxazaborolidine - Catalyzed Asymmetric Borane Reduction,” Cheminform 31, no. 46 (2010): 1049–51.
  • A. Chadha, M. Manohar, T. Soundararajan, and T. S. Lokeswari, “Asymmetric Reduction of 2-Oxo-4-Phenylbutanoic Acid Ethyl Ester by Daucus carota Cell Cultures,” Tetrahedron: Asymmetry 7, no. 6 (1996): 1571–2.
  • B. Baskar, S. Ganesh, T. S. Lokeswari, and A. Chadha, “Highly Stereoselective Reduction of 4-Aryl-2-Oxo but-3-Enoic Carboxylic Esters by Plant Cell Culture of Daucus carota,” Journal of Molecular Catalysis B: Enzymatic 27, no. 1 (2004): 13–17.
  • G. Kumaraswamy, and S. Ramesh, “Soaked Phaseolus aureus L: An Efficient Biocatalyst for Asymmetric Reduction of Prochiral Aromatic Ketones,” Green Chemistry 5, no. 3 (2003): 306–8.
  • A. M. Fonseca, F. J. Q. Monte, M. da C. F. de Oliveira, M. C. de Mattos, G. A. Cordell, R. Braz-Filho, T. L. G. Lemos. “Coconut Water (Cocos nucifera L.)-A New Biocatalyst System for Organic Synthesis,” Journal of Molecular Catalysis B: Enzymatic 57, no. 1 (2008): 78–82.
  • H. V. Chavan, and B. P. Bandgar, “Aqueous Extract of Acacia concinna Pods: An Efficient Surfactant Type Catalyst for Synthesis of 3-Carboxycoumarins and Cinnamic Acids via Knoevenagel Condensation,” ACS Sustainable Chemistry & Engineering 1, no. 8 (2013): 929–36.
  • K. Mote, S. Pore, G. Rashinkar, S. Kambale, and A. Kumbhar, “Acacia concinna Pods: As a Green Catalyst for Highly Efficient Synthesis of Acylation of Amines,” Archives of Applied Science Research 2, no. 3 (2010): 74–80.
  • D. M. Sirsat, and Y. B. Mule, “An Environmentally Benign Synthesis of Aryl-Hydrazones with Aqueous Extract of Acacia Pods as a Natural Surfactant Type Catalyst,” Iranian Chemical Communication 91, (2016): 373–88.
  • R. S. Keri, A. Hiremathad, S. Budagumpi, and B. M. Nagaraja, “Comprehensive Review in Current Developments of Benzimidazole-Based Medicinal Chemistry,” Chemical Biology and Drug Design 86, no. 1 (2015): 799–845.
  • J. S. Mason, I. Morize, P. R. Menard, D. L. Cheney, C. Hulme, and R. F. Labaudiniere, “New 4-Point Pharmacophore Method for Molecular Similarity and Diversity Applications: Overview of the Method and Applications, Including a Novel Approach to the Design of Combinatorial Libraries Containing Privileged Substructures,” Journal of Medicinal Chemistry 42, no. 17 (1999): 3251–64.
  • M. J. Tebbe, W. A. Spitzer, F. Victor, S. C. Miller, C. C. Lee, T. R. Sattelberg, E. McKinney, and J. C. Tang, “Antirhino/Enteroviral Vinylacetylene Benzimidazoles: A Study of Their Activity and Oral Plasma Levels in Mice,” Journal of Medicinal Chemistry 40, no. 24 (1997): 3937–46.
  • A. R. Porcari, R. V. Devivar, L. S. Kucera, J. C. Drach, and L. B. Townsend, “Design, Synthesis, and Antiviral Evaluations of 1-(Substituted Benzyl)-2-Substituted-5,6-Dichlorobenzimidazoles as Nonnucleoside Analogues of 2,5,6-Trichloro-1-(β-D-Ribofuranosyl)Benzimidazole,” Journal of Medicinal Chemistry 41, no. 8 (1998): 1252–62.
  • T. Roth, M. L. Morningstar, P. L. Boyer, S. H. Hughes, R. W. Buckheit, and C. J. Michejda, “Synthesis and Biological Activity of Novel Nonnucleoside Inhibitors of HIV-1 Reverse Transcriptase. 2-Aryl-Substituted Benzimidazoles,” Journal of Medicinal Chemistry 40, no. 26 (1997): 4199–207.
  • M. T. Migawa, J. Girardet, J. A. Walker, G. W. Koszalka, S. D. Chamberlain, J. C. Drach, and L. B. Townsend, “Design, Synthesis, and Antiviral Activity of α -Nucleosides: d - and l -Isomers of Lyxofuranosyl- and (5-Deoxylyxofuranosyl) Benzimidazoles,” Journal of Medicinal Chemistry 41, no. 8 (1998): 1242–51.
  • J. S. Kim, B. Gatto, C. Yu, a. Liu, L. F. Liu, E. J. LaVoie, and 2. “Substituted, “5’-Bi-1H-Benzimidazoles: Topoisomerase I Inhibition and Cytotoxicity,” Journal of Medicinal Chemistry 39, no. 4 (1996): 992–8.
  • H. Zarrinmayeh, D. M. Zimmerman, B. E. Cantrell, D. A. Schober, R. F. Bruns, S. L. Gackenheimer, P. L. Ornstein, P. A. Hipskind, T. C. Britton, D. R. Gehlert. “Structure-Activity Relationship of a Series of Diaminoalkyl Substituted Benzimidazole as Neuropeptide Y Y1 Receptor Antagonists,” Bioorganic & Medicinal Chemistry Letters 9, no. 5 (1999): 647–52.
  • Y. Inada, T. Naka, E. Imamiya, K. Kubo, Y. Kohara, and T. Wada, “Synthesis and Angiotensin ii Receptor Antagonistic Activities of Benzimidazole Derivatives Bearing Acidic Heterocycles as Novel Tetrazole Bioisosteres,” Journal of Medicinal Chemistry 39, no. 26 (1996): 5228–35.
  • L. Figueroa-Valverde, F. Díaz-Cedillo, E. García-Cervera, E. Pool-Gómez, M. Rosas-Nexticapa, M. López-Ramos, L. Hau-Heredia, and B. Sarabia-Alcocer, “Design and Synthesis of Two Triazonine-Carbaldehyde Derivatives Using Several Chemical Tools,” Journal of Chemistry 22, no. 2 (2018): 136–45.
  • T. Fonseca, B. Gigante, and T. L. Gilchrist, “A Short Synthesis of Phenanthro[2,3-d]Imidazoles from Dehydroabietic Acid. Application of the Methodology as a Convenient Route to Benzimidazoles,” Tetrahedron 57, no. 9 (2001): 1793–9.
  • Z. (Spring) Zhao, D. O. Arnaiz, B. Griedel, S. Sakata, J. L. Dallas, M. Whitlow, L. Trinh, J. Post, A. Liang, M. M. Morrissey, et al. “Design, Synthesis, and in Vitro Biological Activity of Benzimidazole Based Factor Xa Inhibitors,” Bioorganic & Medicinal Chemistry Letters 10, no. 9 (2002): 963–6.
  • M. Burnier, and H. R. Brunner, “Angiotensin II Receptor Antagonists,” Lancet (London, England) 355, no. 9204 (2000): 637–45.
  • V. R. Vorperian, S. Zhang, Q. Gong, C. T. January, and Z. Zhou, “Block of Herg Potassium Channels by the Antihistamine Astemizole and Its Metabolites Desmethylastemizole and Norastemizole,” Journal of Cardiovascular Electrophysiology 10, no. 6 (1999): 836–43.
  • A. Prakash, and H. M. Lamb, “Mizolastine: A Review of Its Use in Allergic Rhinitis and Chronic Idiopathic Urticaria,” BioDrugs 10, no. 1 (1998): 41–63.
  • L. Bielory, K. W. Lien, and S. Bigelsen, “Efficacy and Tolerability of Newer Antihistamines in the Treatment of Allergic Conjunctivitis,” Drugs 65, no. 2 (2005): 215–28.
  • N. V. Shitole, K. S. Niralwad, B. B. Shingate, and M. S. Shingare, “Synthesis of 2-Aryl-1-Arylmethyl-1 H -Benzimidazoles Using Chlorosulfonic Acid at Room Temperature,” Arabian Journal of Chemistry 6, (2016): S858–S860.
  • R. Varala, A. Nasreen, R. Enugala, and S. R. Adapa, “L-Proline Catalyzed Selective Synthesis of 2-Aryl-1-Arylmethyl-1H-Benzimidazoles,” Tetrahedron Letters 48, no. 1 (2007): 69–72.
  • S. S. Pawar, D. V. Dekhane, M. S. Shingare, and S. N. Thore, “Glyoxylic Acid as Catalyst: A Simple Selective Synthesis of 1,2-Disubstituted Benzimidazoles in Aqueous Media,” Chinese Chemical Letters 19, no. 9 (2008): 1055–8.
  • R. G. Jacob, L. G. Dutra, C. S. Radatz, S. R. Mendes, G. Perin, and E. J. Lenardao, “Synthesis of 1,2-Disubstitued Benzimidazoles Using SiO2/ZnCl2,” Tetrahedron Letters 50, no. 13 (2009): 1495–7.
  • H. A. Oskooie, M. M. Heravi, A. Sadnia, F. K. Behbahani, and F. Jannati, “Solventless Synthesis of 2-Aryl-1-Arylmethyl-1H-1,3-Benzimidazoles Catalyzed by Fe(ClO4)3 at Room Temperature,” Chinese Chemical Letters 18, no. 11 (2007): 1357–60.
  • J. P. Wan, S. F. Gan, J. M. Wu, and Y. Pan, “Water Mediated Chemoselective Synthesis of 1,2-Disubstituted Benzimidazoles Using o-Phenylenediamine and the Extended Synthesis of Quinoxalines,” Green Chemistry 11, no. 10 (2009): 1633–7.
  • P. Salehi, M. Dabiri, M. A. Zolfigol, S. Otokesh, and M. Baghbanzadeh, “Selective Synthesis of 2-Aryl-1-Arylmethyl-1H-1,3-Benzimidazoles in Water at Ambient Temperature,” Tetrahedron Letters 47, no. 15 (2006): 2557–60.
  • N. D. Kokare, J. N. Sangshetti, and D. B. Shinde, “One-Pot Efficient Synthesis of 2-Aryl-1-Arylmethyl-1H-Benzimidazoles and 2,4,5-Triaryl-1H-Imidazoles Using Oxalic Acid Catalyst,” Synthesis 1, no. 18 (2007): 2829–34.
  • P. Sharma, P. Bandyopadhyay, M. Sathe, M. P. Kaushik, and G. K. Prasad, “Mesoporous Mixed Metal Oxide Nanocrystals: Efficient and Recyclable Heterogeneous Catalysts for the Synthesis of 1,2-Disubstituted Benzimidazoles and 2-Substituted Benzothiazoles,” Journal of Molecular Catalysis A: Chemical 341, no. 1 (2011): 77–82.
  • S. Reddy, N. C. G. Reddy, T. R. Reddy, Y. Lingappa, and B. M. Reddy, “Chemoselective Synthesis of 2-Aryl-1-Arylmethyl-1H-Benzo[d]Imidazoles Using Indion 190 Resin as a Heterogeneous Recyclable Catalyst,” Journal of the Korean Chemical Society 55, no. 2 (2011): 304–7.
  • P. Ghosh, and A. Mandal, “Catalytic Role of Sodium Dodecyl Sulfate: Selective Synthesis of 1, 2-Disubstituted Benzimidazoles in Water,” Catalysis Communications 12, no. 8 (2011): 744–7.
  • S. Santra, A. Majee, and A. Hajra, “Nano Indium Oxide: An Efficient Catalyst for the Synthesis of 1,2-Disubstituted Benzimidazoles in Aqueous Media,” Tetrahedron Letters 53, no. 15 (2012): 1974–7.
  • R. Roy, A. Ghatak, S. Bhar, S. Khan, and A. Pramanik, “Eco-Friendly Synthesis of 2-Aryl-1-Arylmethyl-1H-Benzimidazoles Using Alumina-Sulfuric Acid as a Heterogeneous Reusable Catalyst,” Tetrahedron Letters 55, no. 10 (2014): 1771–7.
  • K. K. Singhal, A. K. Singh, and S. Kerketta, “Nutritional Evaluation of Indigenous Plants and Quantification of Total Saponins in Plant Extracts,” International Journal of Current Microbiology and Applied Sciences 6, no. 9 (2017): 1368–77.
  • R. Pal, “Fruit Juice: A Natural, Green and Biocatalyst System in Organic Synthesis,” Open Journal of Organic Chemistry 1, no. 4 (2013): 47–56.
  • G. Pratap andV, and Bhaskar Rao, “Evaluation of Surface Active Properties of Saponins Isolated from Acacia concinna Pods,” Fett Wissenschaft Technologie/Fat Science Technology 89, (1987): 205–8.
  • I. P. Varshney, and K. M. Shamsuddin, “Saponins and Sapogenins XXV - The Sapogenin of Acacia concinna d.c. Pods and the Constitction of Acacic Acid,” Tetrahedron Letters 1, no. 30 (1964): 2055–8.
  • I. P. Varshney, and K. M. Shamsuddin, “Absolute Structure of Acacic Acid,” Bulletin of the Chemical Society of Japan 43, no. 12 (1970): 3830–40.
  • S. S. Gholap, and S. R. Ugale, “A Total Synthesis of the Cyclic Depsipeptide Chaiyaphumine-a,” Chemistryselect 2, no. 24 (2017): 7445–9.
  • S. R. Ugale, and S. S. Gholap, “An Efficient Synthesis of Structurally Diverse 2-methyl-N-[(3-Phenylamino)Oxetan-3-yl]-2-Propanesulfinamide Derivatives under Catalyst Free Conditions,” Chemical Papers 71, no. 12 (2017): 2435–43.
  • S. Gholap, and N. Gunjal, “2,4,6-Trichloro-1,3,5-Triazine (TCT) Mediated One Pot Direct Synthesis of N-Benzoylthioureas from Carboxylic Acids,” Arabian Journal of Chemistry 10, (2017): S2750–S2753.
  • S. S. Gholap, “Pyrrole: An Emerging Scaffold for Construction of Valuable Therapeutic Agents,” European Journal of Medicinal Chemistry 110, (2016): 13–31.
  • V. D. Dhakane, S. S. Gholap, U. P. Deshmukh, H. V. Chavan, and B. P. Bandgar, “An Efficient and Green Method for the Synthesis of [1,3]Oxazine Derivatives Catalyzed by Thiamine Hydrochloride (VB1) in Water,” Comptes Rendus Chimie 17, no. 5 (2014): 431–6.
  • S. S. Gholap, V. D. Dhakane, and S. S. Gholap, “Solid-Supported Dichloro[1,3,5]-Triazine: A Versatile Synthetic Auxiliary for Direct Synthesis of n-Sulphonylamines from Sulphonic Acid and Amine,” Jordan Journal of Chemistry 7, no. 3 (2012): 279–85.
  • K. P. Ananthapadmanabhan, E. D. Goddard, and P. Chandar, “A Study of the Solution, Interfacial and Wetting Properties of Silicone Surfactants,” Colloids and Surfaces 44, (1990): 281–97.
  • N. M. Kovalchuk, A. Barton, A. Trybala, and V. Starov, “Surfactant Enhanced Spreading: Catanionic Mixture,” Colloids and Interface Science Communications 1, (2014): 1–5.
  • B. Samiey, C. H. Cheng, and J. Wu, “Effects of Surfactants on the Rate of Chemical Reactions,” Journal of Chemistry 2014, (2011): 153–6.
  • R. C. Oliver, J. Lipfert, D. A. Fox, R. H. Lo, S. Doniach, and L. Columbus, “Dependence of Micelle Size and Shape on Detergent Alkyl Chain Length and Head Group,” PLoS One 8, no. 5 (2013): e62488–10.
  • K. Bahrami, M. M. Khodaei, and A. Nejati, “Synthesis of 1,2-Disubstituted Benzimidazoles, 2-Substituted Benzimidazoles and 2-Substituted Benzothiazoles in SDS Micelles,” Green Chemistry 12, no. 7 (2010): 1237–41.
  • M. Chakrabarty, R. Mukherjee, S. Karmakar, and Y. Harigaya, “Tosic Acid-on-Silica Gel: A Cheap and Eco-Friendly Catalyst for a Convenient One-Pot Synthesis of Substituted Benzimidazoles,” Monatshefte Für Chemie - Chemical Monthly 138, no. 12 (2007): 1279–82.
  • B. Kumar, K. Smita, B. Kumar, and L. Cumbal, “Ultrasound Promoted and SiO2/CCl3COOH Mediated Synthesis of 2-Aryl-1-Arylmethyl-1H-Benzimidazole Derivatives in Aqueous Media: An Eco-Friendly Approach,” Journal of Chemical Sciences 126, no. 6 (2014): 1831–40.
  • C. W. Kuo, S. V. More, and C. F. Yao, “NBS as an Efficient Catalyst for the Synthesis of 1,5-Benzodiazepine Derivatives under Mild Conditions,” Tetrahedron Letters 47, no. 48 (2006): 8523–8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.