381
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis of Novel Quin[1,2-b]Acridines: In Vitro Cytotoxicity and Molecular Docking Studies

ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 1631-1645 | Received 29 Dec 2018, Accepted 02 Nov 2019, Published online: 25 Nov 2019

References

  • (a) J. P. Michael, “Quinoline, Quinazoline and Acridone Alkaloids,” Natural Product Reports 24, no. 1 (2007): 223–46.; (b) Albert. A., The Acridines, 2nd ed. (London: Edward Arnold Ltd., 1996); (c) Groundwater, P. W.; Munawar. M. A., Advances in Heterocyclic Chemistry, edited by A. R. Katritzky (New York: Academic Press, 1998), vol. 70, pp 89–161; (c) Groundwater, P. W.; Munawar. M. A., Heterocycle-Fused Acridines- Advances in Heterocyclic Chemistry, edited by A. R. Katritzky (New York: Academic Press, 1998), vol. 70, pp 89–161; (d) Andreas, S.; Ming Liu, Recent Advances in the Chemistry of Acridines. Advances in Heterocyclic Chemistry, edited by Eric F.V. Scriven and Christopher A. Ramsden, 2015, Vol. 115, 287–353.
  • (a) M. K. Cheng, C. Modi, J. C. Cookson, I. Hutchinson, R. A. Heald, A. J. McCarroll, S. Missailidis, F. Tanious, W. D. Wilson, J.-L. Mergny, et al. “Antitumor Polycyclic Acridines. 20. Search for DNA Quadruplex Binding Selectivity in a Series of 8,13-Dimethylquino[4,3,2-kl]Acridinium Salts: telomere-Targeted Agents,” Journal of Medicinal Chemistry 51, no. 4 (2008): 963 [pubmedMismatch]; (b) I. Sánchez, R. Reches, D. H. Caignard, P. Renard, and M. D. Pujol, “Synthesis and Biological Evaluation of Modified Acridines: The Effect of N- and O- Substituent in the Nitrogenated Ring on Antitumor activity,” European Journal of Medicinal Chemistry 41, no. 3 (2006): 340 [pubmedMismatch]; (c) V. A. Bacherikov, J. Y. Chang, Y.-W. Lin, C. H. Chen, W. Y. Pan, H. Dong, R. Z. Lee, T. C. Chou, and T. L. Su, “Synthesis and Antitumor Activity of 5-(9-Acridinylamino)Anisidine Derivatives,”Bioorganic & Medicinal Chemistry. 13, no. 23 (2005): 6513. ; (d) A. Kuzuya, R. Mizoguchi, T. Sasayama, J.-M. Zhou, and M. Komiyama, “Selective Activation of Two Sites in RNA by Acridine-bearing Oligonucleotides for Clipping of Designated RNA Fragments,” Journal of the American Chemical Society 126, no. 5 (2004): 1430 [pubmedMismatch]; (e) J. Joseph, N. V. Eldho, and D. Ramaiah, “Design of Photoactivated DNA Oxidizing Agents: synthesis and Study of Photophysical Properties and DNA Interactions of Novel viologen-linked acridines,” Chemistry (Weinheim an Der Bergstrasse, Germany) 9, no. 23 (2003): 5926[pubmedMismatch]; (f) I. Antonini, P. Polucci, A. Magnano, and S. Martelli, “Synthesis, Antitumor Cytotoxicity, and DNA-binding of novel N-5,2-di(omega-aminoalkyl)-2,6-dihydropyrazolo[3,4,5-kl]acridine-5-carboxamides,” Journal of Medicinal Chemistry 44, no. 20 (2001): 3329
  • M. J. Wainwright, “Acridine-a Neglected Antibacterial Chromophore,” Journal of Antimicrobial Chemotherapy 47, no. 1 (2001): 1.
  • F. Hamy, V. Brondani, A. Flörsheimer, W. Stark, M. J. J. Blommers, and T. Limkait, “A New Class of HIV-1 Tat Antagonist Acting Through Tat-TAR Inhibition,”Biochemistry 37, no. 15 (1998): 5086
  • (a) M. Jones, A. E. Mercer, P. A. Stocks, L. J. I. L. Pensée, R. Cosstick, B. K. Park, M. E. Kennedy, I. Piantanida, S. A. Ward, J. Davies, et al. “Antitumour and Antimalarial Activity of Artemisinin-Acridine Hybrids,” Bioorganic & Medicinal Chemistry Letters, 19, no. 7 (2009): 2033[pubmedMismatch]; (b) F. Zsila, J. Visy, G. Mady, and I. Fitos, “Selective Plasma Protein Binding of Antimalarial Drugs to Alpha1-acid Glycoprotein,” Bioorganic & Medicinal Chemistry 16, no. 7 (2008): 3759
  • (a) M. G. Pitta, M. Pitta, M. Lima, S. Galdino, and I. Pitta, “Niche for Acridine Derivatives in Anticancer Therapy,” Mini Reviews in Medicinal Chemistry 13, no. 9 (2013): 1256 [pubmedMismatch]; (b) M. Demeunynck, F. Charmantray, and A. Martelli, “Interest of Acridine Derivatives in the Anticancer Chemotherapy,” Current Pharmaceutical Design 7, no. 17 (2001): 1703 [pubmedMismatch]; (c) P. Belmont, J. Bosson, T. Godet, and M. Tiano, “Acridine and Acridone Derivatives, Anticancer Properties and Synthetic Methods: Where Are We Now?” Anti-Cancer Agents in Medicinal Chemistry 7, no. 2 (2007): 139.; (d) P. Belmont, and I. Dorange, “Acridine/Acridone: A Simple Scaffold with a Wide Range of Application in Oncology,” Expert Opinion on Therapeutic Patents 18, no. 11 (2008): 1211. ; (e) G. Cholewinski, K. Dzierzbicka, and A. M. “Kolodziejczyk, Natural and synthetic acridines/acridones as antitumor agents: their biological activities and methods of synthesis,” Pharmacological Reports, no. 63 (2011): 305 (f) X. Lang, X. Luan, C. Gao, and Y. Jiang, “Recent Progress of Acridine Derivatives with Antitumor Activity,” Progress in Chemistryno. 24 (2012): 1497.
  • (a) Rajendran Satheeshkumar, Werner Kaminsky, and Karnam Jayarampillai Rajendra Prasad, “Efficient Novel Synthesis of Pyrano[3,2- a ]- and Pyrazolo[4,3- a ]-Acridines,” Synthetic Communications 47, no. 3 (2017): 245. ; (b) Rajendran Satheeshkumar, and Karnam Jayarampillai Rajendra Prasad, “Solvent-Free Synthesis of Dibenzo[ b,j ][1,10]Phenanthroline Derivatives Using Eaton’s Reagent as Catalyst,” Synthetic Communications 47, no. 10 (2017): 990. ; (c) Rajendran Satheeshkumar, Werner Kaminsky, Hazel A. Sparkes, and Karnam Jayarampillai Rajendra Prasad, “Efficient Protocol for Synthesis of Pyrazolo[3,4- a ]Acridines,” Synthetic Communications 45, no. 19 (2015): 2203. ; (d) R. Satheeshkumar, K. Praveenkumar, P. Shanmugavel, and K. J. Rajendra Prasad, An expedient synthesis of isoxazolo - and pyrazolo-[3,4-a]acridines with molecular docking studies, Indian Journal of Chemistry 57B (2018): 345.
  • (a) Rajendran Satheeshkumar, Ramasamy Shankar, Werner Kaminsky, Sivalingam Kalaiselvi, Viswanadha Vijaya Padma, and Karnam Jayarampillai Rajendra Prasad, “Theoretical and Experimental Investigations on Molecular Structure of 7-Chloro-9-Phenyl-2,3-Dihydroacridin-4(1H)-One with Cytotoxic Studies,” Journal of Molecular Structure 1109 (2016): 247. ; (b) Rajendran Satheeshkumar, Koray Sayin, Werner Kaminsky, and Karnam Jayarampillai Rajendra Prasad, “Synthesis, Spectral Analysis and Quantum Chemical Studies on Molecular Geometry, Chemical Reactivity of 7-Chloro-9-(2′-Chlorophenyl)-2,3-Dihydroacridin-4(1H)-One and 7-Chloro-9-(2′-Fluorophenyl)-2,3-Dihydroacridin-4(1H)-One,” Journal of Molecular Structure 1128 (2017): 279. ; (c) Rajendran Satheeshkumar, Ramasamy Shankar, Werner Kaminsky, and Karnam Jayarampillai Rajendra Prasad, “Novel Synthetic and Mechanistic Approach of TFA Catalysed Friedländer Synthesis of 2-Acylquinolines from Symmetrical and Unsymmetrical 1,2-Diketones with o -Aminoarylketones,” ChemistrySelect 1, no. 21 (2016): 6823.
  • (a) S. Eswaran, A. V. Adhikari, I. H. Chowdhury, N. K. Pal, and K. D. Thomas, “New Quinoline Derivatives: Synthesis and Investigation of Antibacterial and Antituberculosis Properties,” European Journal of Medicinal Chemistry 45, no. 8 (2010): 3374[pubmedMismatch]; (b) S. Eswaran, A. V. Adhikari, and N. S. Shetty, “Synthesis and Antimicrobial Activities of Novel Quinoline Derivatives Carrying 1,2,4-triazole Moiety,” European Journal of Medicinal Chemistry 44, no. 11 (2009): 4637
  • (a) S. S. Labana, and L. L. Labana, “Quinacridones,” Chemical Reviews 67, no. 1 (1967): 1–18.; (b) K. Manabe, S. Kusabayashi, and M. Yokoyama, “Long-Life Organic Solar Cell Fabrication Using Quinacridone Pigment,” Chemistry Letters 16, no. 4 (1987): 609–12.
  • R. Satheeshkumar, R. Rajamanikandan, M. Ilanchelian, S. Koray, and K. J. Rajendra Prasad, “Synthesis of Novel 1,10-Phenanthroline Derivatives and It Used as Probes for Sensitive Detection of Zn2+ and Cd2+ Metal Ions – Spectroscopic and Theoretical Approach,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 221, (2019): 117196.
  • (a) R. S. Kumar, and S. Arunachalam, Polyhedron 26 (2007): 3255.; (b) J. Liu, W. Zheng, S. Shi, C. Tan, J. Chen, K. Zheng, and L. J. Ji, “Synthesis, Antitumor Activity and Structure–Activity Relationships of a Series of Ru(II) Complexes,” Journal of Inorganic Biochemistry 102, no. 2 (2008): 193. ; (c) E. K. Efthimiadou, M. E. Katsarou, A. Karaliota, and G. J. Psomas, “Copper(II) Complexes with Sparfloxacin and Nitrogen-Donor Heterocyclic Ligands: Structure–Activity Relationship,” Journal of Inorganic Biochemistry 102, no. 4 (2008): 910. ; (d) W.-J. Mei, N. Wang, Y.-J. Liu, Y.- Z. Ma, D.-Y. Wang, and B.-X. Liang, “Studies on Cytotoxic and DNA-Binding Properties of Two Ruthenium(II) Complexes of a Substituted Phenanthroline Ligand,” Transition Metal Chemistry 33, no. 4 (2008): 499.
  • (a) A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser, and A. von Zelewsky, “Ru(II) Polypyridine Complexes: photophysics, Photochemistry, Eletrochemistry, and Chemiluminescence,” Coordination Chemistry Reviews 84 (1988): 85–277.; (b)Miso Jeong, Hyungoog Nam, Ok-Jae Sohn, Jong Il Rhee, Hyung Jin Kim, Chang-Woo Cho, and Sunwoo Lee, “Synthesis of Phenanthroline Derivatives by Sonogashira Reaction and the Use of Their Ruthenium Complexes as Optical Sensors,”Inorganic Chemistry Communication 11, no. 1 (2008): 97. ; (c)Alex Wing-Tat Choi, Che-Shan Poon, Hua-Wei Liu, Heung-Kiu Cheng, and Kenneth Kam-Wing Lo, “Rhenium(i) Polypyridine Complexes Functionalized with a Diaminoaromatic Moiety as Phosphorescent Sensors for Nitric Oxide,”New Journal of Chemistry 37, no. 6 (2013): 1711.
  • (a) T. Yonetani, “Studies on liver alcohol dehydrogenase complexes II. The interaction of the enzyme with O-phenanthroline and crystallization of complexes of phenanthroline-enzyme, enzyme-adenosine diphosphate ribose, and phenanthro-line-enzyme-adenosine diphosphate ribose,” Biochemistry Z 338, (1963): 300.; (b) J. A. Carver, G. S. Baldwin, D. B. Keech, R. Bais, and J. C. Wallace, “Inactivation of Chicken Liver Pyruvate Carboxylase by 1,10-Phenanthroline,”Biochemical Journal 252, no. 2 (1988): 501. ; (c) E. Gerber, A. Bredy, and R. Kahl, “Ortho-Phenanthroline Modulates Enzymes of Cellular Energy Metabolism,”Toxicology 110, no. 1–3 (1996): 85.
  • (a) P. Kathirgamanathan, S. Surendrakumar, R. R. Vanga, S. Ravichandran, J. Antipan-Lara, S. Ganeshamurugan, M. Kumaraverl, G. Paramaswara, and V. Arkley, “Arylvinylene Phenanthroline Derivatives for Electron Transport in Blue Organic Light Emitting Diodes,” Organic Electronics 12no. 4 (2011): 666.
  • (a) E. Schoffers, “Reinventing Phenanthroline Ligands − Chiral Derivatives for Asymmetric Catalysis?,” European Journal of Organic Chemistry 2003, no. 7 (2003): 1145–52.; (b) M.-Y. Hu, H. Qiao, S.-J. Fan, W. Zi-Chen, L.-Y. Liu, M. Yi-Jiang, P. Qian, and Z. Shou-Fei, “Ligands with 1,10-phenanthroline Scaffold for Highly Regioselective Iron-catalyzed Alkene Hydrosilylation,”Nature Communications 9no. 1 (2018): 221
  • (a) K. Saeki, H. Kawai, Y. Kawazoe, and A. Hakura, “Dual Stimulatory and Inhibitory Effects of Fluorine-Substitution on Mutagenicity: An Extension of the Enamine Epoxide Theory for Activation of the Quinoline Nucleus,” Biological & Pharmaceutical Bulletin 20, no. 6 (1997): 646.; (b)Liying Zhang, Bin Li, Liming Zhang, Ping Chen, and Shiyong Liu, “Synthesis, Characterization, and Luminescent Properties of Europium Complexes with Fluorine Functionalized Phenanthroline,” Journal of the Electrochemical Society 156no. 3 (2009): H202. ; (c) C. Brenden, F. Sarah, K. Werner, and D. P. Gregory, Journal of Fluorine Chemistry 173, (2015): 63.
  • (a) O. Baudoin, C. Marchand, M. P. Teulade-Fichou, J. P. Vigneron, J.-S. Sun, T. Garestier, C. Helene, and J.-M. Lehn, “Stabilization of DNA Triple Helices by Crescent-Shaped Dibenzophenanthrolines,” Chemistry - A European Journal 4, no. 8 (1998): 1504. ; (b)Jamal El Bakali, Frédérique Klupsch, Aurore Guédin, Bertrand Brassart, Gaëlle Fontaine, Amaury Farce, Pascal Roussel, Raymond Houssin, Jean-Luc Bernier, Philippe Chavatte, et al. “ 2,6-Diphenylthiazolo[3,2-b][1,2,4]triazoles as Telomeric G-Quadruplex Stabilizers,” Bioorganic & Medicinal Chemistry Letters 19, no. 13 (2009): 3434[pubmedMismatch]; (c) P. Alberti, L. Lacroix, L. Guittat, C. Helene, and J.-L. Mergny, “Nucleic Acids as Targets for Antitelomerase Agents,” Mini-Reviews in Medicinal Chemistry 3, no. 1 (2003): 23. ; (d) M. P. Teulade-Fichou, C. Carrasco, L. Guittat, C. Bailly, P. Alberti, J. L. Mergny, A. David, J. M. Lehn, and W. D. Wilson, “Selective Recognition of G-qQuadruplex Telomeric DNA by a bis(quinacridine) macrocycle,” Journal of the American Chemical Society 125, no. 16 (2003): 4732 [pubmedMismatch]; (e) P. Alberti, P. Schmitt, -H. Nguyen, C. C. Rivalle, M. Hoarau, D. S. Grierson, and J.-L. Mergny, “Benzoindoloquinolines Interact with DNA Tetraplexes and Inhibit Telomerase,” Bioorganic & Medicinal Chemistry Letters 12, no. 7 (2002): 1071. ; (f)Melanie Keppler, Oliwia Zegrocka, Lucjan Strekowski, and Keith R. Fox, “DNA Triple Helix Stabilisation by a Naphthylquinoline Dimer,”FEBS Letters 447, no. 2/3 (1999): 223. ; (g) M. P. Teulade-Fichou, D. Perrin, A. Boutorine, D. Polverari, J.-P. Vigneron, J.-M. Lehn, J.-S. Sun, T. Garestier, and C. Helene, “Direct Photocleavage of HIV-DNA by Quinacridine Derivatives Triggered by Triplex formation,” Journal of the American Chemical Society 123, no. 38 (2001): 9283 [pubmedMismatch]; (h) A. Artese, G. Costa, S. Distinto, F. Moraca, F. Ortuso, L. Parrotta, and S. Alcaro, “Toward the Design of New DNA G-Quadruplex Ligands through Rational Analysis of Polymorphism and Binding Data,” European Journal of Medicinal Chemistry 68 (2013): 139. ; (i) E. Delfourne, F. Darro, N. B. Subielos, C. Decaestecker, J. Bastide, A. Frydman, and R. Kiss, “Synthesis and Characterization of the Antitumor Activities of Analogues of Meridine, a Marine Pyridoacridine alkaloid,” Journal of Medicinal Chemistry 44, no. 20 (2001): 3275 [pubmedMismatch]; (j) I. N. Petersen, F. Crestey, and J. L. Kristensen, “Total Synthesis of Ascididemin via Anionic Cascade Ring closure,” Chem. Commun. (Camb.) 48, no. 72 (2012): 9092
  • (a) M.-A. Pedro, H. Samer, A. Ángel, A. Dagmar, J. Joachim, and E.-B. Ana, European Journal of Medicinal Chemistry 144 (2018): 410–23; (b) X. Qia, Z. Na, Z. Lijiao, H. Liming, A. C. Wilian, P. J. Matthew, L. Xitao, and Z. Rugang, “Structure-Based Identification of Novel CK2 Inhibitors with a Linear 2-Propenone Scaffold as anti-Cancer Agents,”Biochemical and Biophysical Research Communications 512, no. 2 (2019): 208–12. ; (c) Thangavel Indumathi, Aathi Muthusankar, P. Shanmughavel, and K. J. Rajendra Prasad, “Synthesis of Hetero Annulated Carbazoles: exploration of in Vitro Cytotoxicity and Molecular Docking Studies,” Medchemcomm 4, no. 2 (2013): 450–5.
  • (a) S. Sarno, and L. A. Pinna, “Protein Kinase CK2 as a Druggable Target,” Molecular Biosystems 4, no. 9 (2008): 889.; (b) B. Guerra, and O. G. Issinger, “Protein Kinase CK2 in Human Diseases,”Current Medicinal Chemistry 15, no. 19 (2008): 1870. ; (c) E. Landesman-Bollag, R. Romieu-Mourez, D. H. Song, G. E. Sonenshein, R. D. Cardiff, and D. C. Seldin, “Protein Kinase CK2 in Mammary Gland Tumorigenesis,”Oncogene 20, no. 25 (2001): 3247. ; (d) Pornchai O-Charoenrat, Valerie Rusch, Simon G. Talbot, Inderpal Sarkaria, Agnes Viale, Nicholas Socci, Ivan Ngai, Pulivarthi Rao, and Bhuvanesh Singh, “Casein Kinase II Alpha Subunit and C1-inhibitor are Independent Predictors of Outcome in Patients with Squamous Cell Carcinoma of the Lung ,” Clinical Cancer Research : An Official Journal of the American Association for Cancer Research 10, no. 17 (2004): 5792 [pubmedMismatch]; (e) Jin Seok Kim, Ju In Eom, June-Won Cheong, Ae Jin Choi, Jin Koo Lee, Woo Ick Yang, and Yoo Hong Min, “Protein Kinase CK2alpha as an Unfavorable Prognostic Marker and Novel Therapeutic Target in Acute Myeloid leukemia,” Clinical Cancer Research : An Official Journal of the American Association for Cancer Research 13, no. 3 (2007): 1019
  • T. Mosmann, “Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays,” Journal of Immunological Methods 65, no. 1/2 (1983): 55.
  • (a) G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, and A. J. Olson, “AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility,” Journal of Computational Chemistry 16 (2009): 2785–91.; (b) Pique, E. M. Huey, R. The Autodock4.2 Molecular Graphics System. https://doi.org/http://autodock.scripps.edu/downloads/autodock-registration/autodock-4–2-download-page, 2010.
  • R. Prudent, V. Moucadel, C.-H. Nguyen, C. Barette, F. Schmidt, J.-C. Florent, L. Lafanechere, C. F. Sautel, E. Duchemin-Pelletier, E. Spreux, et al. “Antitumor Activity of Pyridocarbazole and Benzopyridoindole Derivatives That Inhibit Protein Kinase CK2,”Cancer Research 70, no. 23 (2010): 9865–74.
  • Rajendran Satheeshkumar, Aathi Muthusankar, Lincy Edatt, V. B. Sameer Kumar, Hazel A. Sparkes, and Karnam Jayarampillai Rajendra Prasad, “Synthesis of Heteroannulated Cyclopent[ b ]Indoles: Exploration of in Vitro Cytotoxicity and Molecular Docking Studies,”Synthetic Communication 48, no. 4 (2018): 447.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.