161
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

Potash Alum as a Sustainable Heterogeneous Catalyst: A One-Pot Efficient Synthesis of Highly Functionalized Pyrrol-2-ones and Furan-2-ones

, , , , , , & show all
Pages 1130-1140 | Received 02 Sep 2019, Accepted 09 May 2020, Published online: 22 May 2020

References

  • A. Raghuraman, E. Ko, L. M. Perez, T. R. Ioerger, and K. Burgess, “Pyrrolinone–Pyrrolidine Oligomers as Universal Peptidomimetics,” Journal of the American Chemical Society 133, no. 32 (2011): 12350–3.
  • T. Kawasuji, M. Fuji, T. Yoshinaga, A. Sato, T. Fujiwara, and R. Kiyama, “3-Hydroxy-1,5-Dihydro-Pyrrol-2-One Derivatives as Advanced Inhibitors of HIV Integrase,” Bioorganic & Medicinal Chemistry 15 (2007): 487–5492.
  • Y. Mizushina, S. Kobayashi, K. Kuramochi, S. Nagata, F. Sugawara, and K. Sakaguchi, “Epolactaene, a Novel Neuritogenic Compound in Human Neuroblastoma Cells, Selectively Inhibits the Activities of Mammalian DNA Polymerases and Human DNA Topoisomerase II,” Biochemical and Biophysical Research Communications 273, no. 2 (2000): 784–8.
  • Q. Zhu, L. Gao, Z. Chen, S. Zheng, H. Shu, J. Li, H. Jiang, and S. Liu, “A Novel Class of Small-Molecule Caspase-3 Inhibitors Prepared by Multicomponent Reactions,” European Journal of Medicinal Chemistry 54 (2012): 232–8.
  • B. Li, M. P. A. Lyle, G. Chen, J. Li, K. Hu, L. Tang, M. A. Alaoui-Jamali, and J. Webster, “Substituted 6-Amino-4H-[1,2] Dithiolo[4,3-b]Pyrrol-5-Ones: Synthesis, Structure–Activity Relationships, and Cytotoxic Activity on Selected Human Cancer Cell Lines,” Bioorganic & Medicinal Chemistry 15 (2007): 4601–8.
  • A. S. Demir, F. Aydogan, and I. M. Akhmedov, “The Synthesis of Chiral 5-Methylene Pyrrol-2(5H)-Ones via Photooxygenation of Homochiral 2-Methylpyrrole Derivatives,” Tetrahedron: Asymmetry 13, no. 6 (2002): 601–5.
  • S. Miao, and R. J. Andersen, “Rubrolides A-H, Metabolites of the Colonial Tunicate Ritterella Rubra,” The Journal of Organic Chemistry 56, no. 22 (1991): 6275–80.
  • L. M. Levy, G. M. Cabrera, J. E. Wright, and A. M. Seldes, “5H-Furan-2-Ones from Fungal Cultures of Aporpium Caryae,” Phytochemistry 62, no. 2 (2003): 239–43.
  • M. Pour, M. Špulák, V. Buchta, P. Kubanová, M. Vopršalová, V. Wsól, H. Fáková, P. Koudelka, H. Pourová, and R. Schiller, “3-Phenyl-5-Acyloxymethyl-2H,5H-Furan-2-Ones: Synthesis and Biological Activity of a Novel Group of Potential Antifungal Drugs,” Journal of Medicinal Chemistry 44, no. 17 (2001): 2701–6.
  • S. Padakanti, M. Pal, and K. R. Yeleswarapu, “An Improved and Practical Synthesis of 5,5-Dimethyl-3-(2-Propoxy)-4-(4-Methanesulfonylphenyl)-2-(5H)-Furanone (DFP—A Selective Inhibitor of Cyclooxygenase-2),” Tetrahedron 59, no. 40 (2003): 7915–20.
  • Y. Wu, S. Luo, W. Mei, L. Cao, H. Wu, and Z. Wang, “Synthesis and Biological Evaluation of 4-Biphenylamino-5-Halo-2(5H)-Furanones as Potential Anticancer Agents,” European Journal of Medicinal Chemistry 139 (2017): 84–94.
  • A. Choudhury, F. Jin, D. Wang, Z. Wang, G. Xu, D. Nguyen, J. Castoro, M. E. Pierce, and P. N. Confalone, “A Concise Synthesis of Anti-Viral Agent F-ddA, Starting from (S)-Dihydro-5-(Hydroxymethyl)-2(3H)-Furanone,” Tetrahedron Letters 44, no. 2 (2003): 247–50.
  • (a) M. M. Khan, S. Saigal, and S. C. Sahoo, “Efficient and Eco‐Friendly One‐Pot Synthesis of Functionalized Furan‐2‐One, Pyrrol‐2‐One, and Tetrahydropyridine Using Lemon Juice as a Biodegradable Catalyst”, ChemistrySelect 3 (2018): 1371–80; (b) H. Sharghi, J. Aboonajmi, M. Mozaffari, M. M. Doroodmand, and M. Aberi, “Application and Developing of Iron‐Doped Multi‐Walled Carbon Nanotubes (Fe/MWCNTs) as an Efficient and Reusable Heterogeneous Nanocatalyst in the Synthesis of Heterocyclic Compounds”, Applied Organometallic Chemistry 32 (2018): 4124.
  • (a) J. N. Zhang, X. H. Yang, W. J. Guo, B. Wang, and Z. H. Zhang, “Magnetic Metal–Organic Framework CoFe2O4@SiO2@IRMOF-3 as an Efficient Catalyst for One-Pot Synthesis of Functionalized Dihydro-2-oxopyrroles”, Synlett, 28, (2016): 734–40; (b) M. Kangani, N. Hazeri, and M. Maghsoodlou, “Synthesis of Pyrrole and Furan Derivatives in the Presence of Lactic Acid as a Catalyst,” Journal of Saudi Chemical Society 21 (2017): 160–4; (c) N. Salehi and B. B. F. Mirjalili, “Synthesis of Highly Substituted Dihydro-2-Oxopyrroles Using Fe3O4@nano-Cellulose–OPO3H as a Novel Bio-Based Magnetic Nanocatalyst,” RSC Advances 7 (2017): 30303–9; (d) S. S. Sajadikhah and N. Hazeri, “Coupling of Amines, Dialkyl Acetylenedicarboxylates and Formaldehyde Promoted by [n-Bu4N][HSO4]: An Efficient Synthesis of Highly Functionalized Dihydro-2-Oxopyrroles and Bis-Dihydro-2-Oxopyrroles,” Synlett 40 (2014): 737–48.
  • (a) M. Zarei and S. S. Sajadikhah, “Green and Facile Synthesis of Dihydropyrrol-2-Ones and Highly Substituted Piperidines Using Ethylenediammonium Diformate (EDDF) as a Reusable Catalyst,” Research on Chemical Intermediates 42, no. 9 (2016): 7005–16; (b) M. Nickraftar, N. N. Hajivar, J. Aboonajmi, and E. Fereidooni, “Nano Fe3O4 as a Magnetically Recyclable, Powerful, and Stable Catalyst for the Multi-Component Synthesis of Highly Functionalized Dihydro-2-Oxopyrroles,” Research on Chemical Intermediates 42 (2016): 2899.
  • (a) L. Lv, S. Zheng, X. Cai, Z. Chen, Q. Zhu, and S. Liu, “Development of Four-Component Synthesis of Tetra- and Pentasubstituted Polyfunctional Dihydropyrroles: Free Permutation and Combination of Aromatic and Aliphatic Amines,” ACS Combinatorial Science 15, no. 4 (2013): 183−92; (b) A. T. Khan, A. Ghosh, and M. M. Khan, “One-Pot Four-Component Domino Reaction for the Synthesis of Substituted Dihydro-2-Oxypyrrole Catalyzed by Molecular Iodine,” Tetrahedron Letters 53 (2012): 2622–6.
  • (a) J. Safaei-Ghomi, A. Hatami, and H. Shahbazi-Alavi, “A Highly Flexible Green Synthesis of 3,4,5-Substituted Furan-2(5H)-ones Using Nano-CdZr4(PO4)6 as Catalyst under Microwave Irradiation,” Polycyclic Aromatic Compounds 37, no. 5 (2017): 407–14; (b) F. Bahramian, A. Fazlinia, S. S. Mansoor, M. Ghashang, F. Azimi, and M. N. Biregan, “Preparation of 3,4,5-Substituted Furan-2(5H)-Ones Using HY Zeolite Nano-Powder as an Efficient Catalyst,” Research on Chemical Intermediates 42 (2016): 6501–6510; (c) S. S. Sajadikhah, M. T. Maghsoodlou, N. Hazeri, S. Mohamadian-Souri, “ZrCl4 as an Efficient Catalyst for One-Pot Four-Component Synthesis of Polysubstituted Dihydropyrrol-2-Ones,” Research on Chemical Intermediates 42 (2016): 2805–14.
  • (a) J. S. Ghomi, E. Heidari-Baghbahadorani, H. Shahbazi-Alavi, “SnO Nanoparticles: A Robust and Reusable Heterogeneous Catalyst for the Synthesis of 3,4,5-Substituted Furan-2(5H)-Ones,” Monatshefte für Chemie 146 (2015): 181–6; (b) M. R. M Shafiee, S. S. Mansoor, M. Ghashang, A. Fazlinia, “Preparation of 3,4,5-Substituted Furan-2(5H)-Ones Using Aluminum Hydrogen Sulfate as an Efficient Catalyst,” Comptes Rendus Chimie 17 (2014): 131–4.
  • J. H. Clark, “Catalysis for Green Chemistry,” Pure and Applied Chemistry 73, no. 1 (2001): 103–11.
  • P. Anastas, and N. Eghbali, “Green Chemistry: Principles and Practice,” Chemical Society Reviews 39, no. 1 (2010): 301–12.
  • F. J. Lozano, P. Freire, G. Guillén-Gozalbez, C. Jiménez-Gonzalez, T. Sakao, N. Mac Dowell, M. G. Ortiz, A. Trianni, A. Carpenter, and T. Viveros, “New Perspectives for Green and Sustainable Chemistry and Engineering: Approaches from Sustainable Resource and Energy Use, Management, and Transformation,” Journal of Cleaner Production 172 (2018): 227–32.
  • S. K. Ritter, “A More Natural Approach to Catalysts,” Chemical & Engineering News 95 (2017): 26–32.
  • (a) K. N. Oo, K. S. Aung, M. Thida, W. W. Khine, M. M. Soe, and T. Aye, “Effectiveness of Potash Alum in Decontaminating Household Water,” Journal of Diarrhoeal Diseases Research 11 (1993): 172–4; (b) S. D. Faust and O. M. Aly, Chemistry of Water Treatment, 2nd ed. (Chelsea, MI: Ann Arbor Press, 1999), 51–4; (c) G. Brahmachari, K. Nurjamal, S. Begam, M. Mandal, N. Nayek, I. Karmakar, and B. Mandal, “Alum (KAl(SO4)2.12H2O)—An Eco-friendly and Versatile Acid-Catalyst in Organic Transformations: A Recent Update,” Current Green Chemistry 6 (2019): 12–31; (d) R. Kaur, A. Gupta, and K. K. Kapoor, “Alum as an Efficient Catalyst for the Multicomponent Synthesis of Functionalized Piperidines,” Research on Chemical Intermediates 43 (2017): 6099–114; (e) M. A. Zolfigol, A. Khazaei, F. Karimitabar, and M. Hamidi, “Alum as a Catalyst for the Synthesis of Bispyrazole Derivatives,” Applied Sciences 6 (2016): 27.
  • (a) F. Tufail, M. Saquib, S. Singh, J. Tiwari, M. Singh, J. Singh, and J. Singh, “A Practical Green Approach to Diversified Spirochromene/Spiropyran Scaffolds via a Glucose-Water Synergy Driven Organocatalytic System,” New Journal of Chemistry 42 (2018): 17279–90; (b) F. Tufail, M. Saquib, S. Singh, J. Tiwari, J. Singh, and J. Singh, “Catalyst‐Free, Glycerol‐Assisted Facile Approach to Imidazole‐Fused Nitrogen‐Bridgehead Heterocycles,” ChemistrySelect 2 (2017): 6082–9; (c) J. Tiwari, M. Saquib, S. Singh, F. Tufail, J. Singh, and J. Singh, “An Efficient, Convenient and One-Pot Synthesis of Diversified Benzochromenes Using L-valine as an Organocatalyst: A Green Protocol,” Synthetic Communications 48 (2018): 188–96; (d) J. Tiwari, M. Saquib, S. Singh, F. Tufail, J. Singh, and J. Singh, “Organocatalytic Mediated Green Approach: A Versatile New L-Valine Promoted Synthesis of Diverse and Densely Functionalized 2-Amino-3-Cyano-4H-Pyrans,” Synthetic Communications 47 (2017): 1999–2006; (e) F. Tufail, M. Saquib, S. Singh, J. Tiwari, M. Singh, J. Singh, and J. Singh, “Bioorganopromoted Green Friedländer Synthesis: A Versatile New Malic Acid Promoted Solvent Free Approach to Multisubstituted Quinolines,” New Journal of Chemistry 41 (2017): 1618–24; (f) J. Tiwari, M. Saquib, S. Singh, F. Tufail, M. Singh, J. Singh, and J. Singh, “Visible Light Promoted Synthesis of Dihydropyrano[2,3-c]chromenes via a Multicomponent-Tandem Strategy under Solvent and Catalyst Free Conditions,” Green Chemistry 18 (2016): 3221; (g) S. Singh, M. Saquib, M. Singh, J. Tiwari, F. Tufail, J. Singh, and J. Singh, “A Catalyst Free, Multicomponent-Tandem, Facile Synthesis of Pyrido[2,3-d]pyrimidines Using Glycerol as a Recyclable Promoting Medium,” New Journal of Chemistry 40 (2016): 63.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.