127
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis of Novel Indenopyrimidine Sulfonamides from Indenopyrimidine-2-Amines via S–N Bond Formation

, & ORCID Icon
Pages 1828-1841 | Received 05 Jun 2020, Accepted 08 Aug 2020, Published online: 21 Aug 2020

References

  • G. L. Patrick, An Introduction to Medicinal Chemistry, 2nd ed. (Oxford: Oxford University Press, 2001).
  • C. T. Supuran, A. Innocenti, A. Mastrolorenzo, and A. Scozzafava, “Antiviral Sulfonamide Derivatives,” Mini Reviews in Medicinal Chemistry 4, no. 2 (2004): 189–200.
  • R. Alam, A. Alam, A. K. Panda, and Rahisuddin, “Design, Synthesis and Cytotoxicity Evaluation of Pyrazolylpyrazoline and Pyrazolyl Aminopyrimidine Derivatives as Potential Anticancer Agents,” Medicinal Chemistry Research 27 (2018): 560–70.
  • R. Alam, D. Wahi, R. Singh, D. Sinha, V. Tandon, A. Grover, and Rahisuddin, “Design, Synthesis, Cytotoxicity, HutopoIIα Inhibitory Activity and Molecular Docking Studies of Pyrazole Derivatives as Potential Anticancer Agents,” Bioorganic Chemistry 69 (2016): 77–90.
  • R. Arif, M. Rana, S. Yasmeen, Amaduddin, M. S. Khan, M. Abid, M. S. Khan, and Rahisuddin, “Facile Synthesis of Chalcone Derivatives as Antibacterial Agents: Synthesis, DNA Binding, Molecular Docking, DFT and Antioxidant Studies,” Journal of Molecular Structure 1208, (2020): 127905–18.
  • A. D. Broom, J. L. Shim, and G. L. Anderson, “Pyrido(2,3-d)pyrimidines. IV. Synthetic Studies Leading to Various Oxopyrido(2,3-d)Pyrimidines,” The Journal of Organic Chemistry 41, no. 7 (1976): 1095–9.
  • E. M. Grivsky, S. Lee, C. W. Sigel, D. S. Duch, and C. A. Nichol, “Synthesis and Antitumor Activity of 2,4-Diamino-6-(2,5-Dimethoxybenzyl)-5-Methylpyrido[2,3-d]Pyrimidine,” Journal of Medicinal Chemistry 23, no. 3 (1980): 327–9.
  • K. Furukawa, and T. Hasegawa, “Preparation of Pyrido[2,3-d]Pyrimidine-2,4-di-One Derivatives as Antiasthmatics and Antiallergics,” Chemical Abstracts 124, (1996): 289568c.
  • A. Rosowsky, C. E. Mota, and S. F. Queener, “Synthesis and Antifolate Activity of 2,4‐Diamino‐5,6,7,8‐Tetrahydropyrido[4,3‐d]Pyrimidine Analogues of Trimetrexate and Piritrexim,” Journal of Heterocyclic Chemistry 32, no. 1 (1995): 335–40.
  • A. M. Thompson, A. J. Bridges, D. W. Fry, A. J. Kraker, and W. A. Denny, “Tyrosine Kinase Inhibitors. 7. 7-Amino-4-(phenylamino)- and 7-Amino-4-[(Phenylmethyl)Amino]Pyrido[4,3-d]Pyrimidines: A New Class Of Inhibitors Of The Tyrosine Kinase Activity Of The Epidermal Growth Factor Receptor,” Journal of Medicinal Chemistry 38, no. 19 (1995): 3780–8.
  • I. O. Donkor, C. L. Klein, L. Liang, N. Zhu, E. Bradley, and A. M. Clark, “Synthesis and Antimicrobial Activity of 6,7-Annulated Pyrido[2,3-d]Pyrimidines,” Journal of Pharmaceutical Sciences 84, no. 5 (1995): 661–4.
  • A. Pastor, R. Alajarin, J. J. Vaquero, J. Alvarez-Builla, M. F. de Casa-Juana, C. Sunkel, J. G. Priego, I. Fonseca, and J. Sanz-Aparicio, “Synthesis and Structure of New Pyrido[2,3-d]Pyrimidine Derivatives with Calcium Channel Antagonist Activity,” Tetrahedron 50, no. 27 (1994): 8085–98.
  • J. Matsumoto, and S. Minami, “Pyrido(2,3-d)Pyrimidine Antibacterial Agents. 3. 8-Alkyl-and 8-Vinyl-5,8-Dihydro-5-Oxo-2-(1-Piperazinyl)Pyrido(2,3-d)Pyrimidine-6-Carboxylic Acids and Their Derivatives,” Journal of Medicinal Chemistry 18, no. 1 (1975): 74–9.
  • N. Suzuki, “Synthesis of Antimicrobial Agents. V. Synthesis and Antimicrobial Activities of Some Heterocylic Condensed 1,8-Naphthyridine Derivatives,” Chemical and Pharmaceutical Bulletin 28, no. 3 (1980): 761–8.
  • V. Oakes, and H. Rydon, “Polyazanaphthalenes. Part IV. Further Derivatives of 1:3:5-and 1:3:8-Triazanaphthalene,” Journal of the Chemical Society (Resumed) (1956): 4433–8.
  • J. I. DeGraw, R. L. Kisliuk, Y. Gaumont, and C. M. Baugh, “Antimicrobial Activity of 8-Deazafolic Acid,” Journal of Medicinal Chemistry 17, no. 4 (1974): 470–1.
  • V. Kolla, A. Deyanov, F. Y. Nazmetdinov, Z. Kashina, and L. Drovosekova, “Investigation of the Anti-Inflammatory and Analgesic Activity of 2-Substituted 1-Aryl-6-Carboxy(Carbethoxy)-7-Methyl-4-Oxo-1,4-Dihydropyrido[2,3-d]Pyrimidines,” Pharmaceutical Chemistry Journal 27, no. 9 (1993): 635–6.
  • J. W. Ellingboe. “Substituted Pyridopyrimidines and Antihypertensives” (US Patent 5,466,692, filed January 10, 1994, and issued November 14, 1995).
  • A. Agarwal, N. Goyal, P. M. Chauhan, and S. Gupta, “Dihydropyrido[2,3-d]Pyrimidines as a New Class of Antileishmanial Agents,” Bioorganic and Medicinal Chemistry 13 (2005): 6678–84.
  • I. Bystryakova, O. Burova, G. Chelysheva, S. Zhilinkova, N. Smirnova, and T. Safonova, “Synthesis and Biological Activity of Pyridol[2,3-d]Pyrimidines,” Pharmaceutical Chemistry Journal 25, no. 12 (1991): 874–6.
  • A. Deyanov, R. K. Niyazov, F. Y. Nazmetdinov, B. Y. Syropyatov, V. Kolla, and M. Konshin, “Synthesis and Biological Activity of Amides and Nitriles of 2-Arylamino-5-Carboxy(Carbethoxy)-6-Methylnicotinic Acids and 1-Aryl-6-Carbethoxy-7-Methyl-4-Oxo-1,4-Dihydropyrido[2,3-d]Pyrimidines,” Pharmaceutical Chemistry Journal 25, no. 4 (1991): 248–50.
  • A. Monge, V. Martinez-Merino, C. Sanmartin, F. J. Fernandez, M. C. Ochoa, C. Bellver, P. Artigas, and E. Fernandez-Alvarez, “2-Arylamino-4-Oxo-3,4-Dihydropyrido[2,3-d]Pyrimidines: Synthesis and Diuretic Activity,” European Journal of Medicinal Chemistry 24, no. 3 (1989): 209–16.
  • H. Sladowska, A. Bartoszko-Malik, and T. Zawisza, “Synthesis and Properties of New Derivatives of Ethyl 7-Methyl-2,4-Dioxo-1,2,3,4-Tetrahydropyrido[2,3-d]Pyrimidine-5-Carboxylate,” Farmaco (Societa Chimica Italiana: 1989) 45 (1990): 101–10.
  • L. H. Hurley, “DNA and its Associated Processes as Targets for Cancer Therapy,” Nature Reviews. Cancer 2, no. 3 (2002): 188–200.
  • M. Israel, L. C. Jones, and E. J. Modest, “6H‐Indeno[1,2‐b]Pyrido[3,2‐e]Pyrazines. A New Heterocyclic Ring System,” Journal of Heterocyclic Chemistry 9, no. 2 (1972): 255–62.
  • B. Vigante, G. Tirzitis, D. Tirzite, B. Chekavichus, J. Uldrikis, A. Sobolev, and G. Duburs, “4-(10-Methyl-10H-Phenothiazin-3-yl)-1,4-Dihydropyridines, 4,5-Dihydroindeno[1,2-b]- and 5,5-Dioxo-4,5-Dihydrobenzo-Thieno[3,2-b]Pyridines,” Chemistry of Heterocyclic Compounds 43, no. 2 (2007): 225–32.
  • Matthias D. Mertens, Markus Pietsch, Gregor Schnakenburg, and Michael Gütschow, “Regioselective Sulfonylation and N- to O-Sulfonyl Migration of Quinazolin-4(3H)-Ones and Analogous Thienopyrimidin-4(3H)-Ones,” The Journal of Organic Chemistry 78, no. 18 (2013): 8966–79.
  • C. D. Gutierrez, V. Bavetsias, and E. McDonald, “ClTi(OiPr)3-Promoted Reductive Amination on the Solid Phase: Combinatorial Synthesis of a Biaryl-Based Sulfonamide Library,” Journal of Combinatorial Chemistry 10, no. 2 (2008): 280–4.
  • A. C. Spivey, and S. Arseniyadis, “Nucleophilic Catalysis by 4-(Dialkylamino)Pyridines Revisited – The Search For Optimal Reactivity And Selectivity,” Angewandte Chemie (International ed. in English) 43, no. 41 (2004): 5436–41.
  • J. N. Naoum, K. Chandra, D. Shemesh, R. B. Gerber, C. Gilon, and M. Hurevich, “DMAP-Assisted Sulfonylation as an Efficient Step for the Methylation of Primary Amine Motifs on Solid Support,” Beilstein Journal of Organic Chemistry 13, (2017): 806–16.
  • R. Arora, R. Bala, P. Kumari, S. Sood, V. Kumar, N. Singh, and K. Singh, “Synthesis of Some Bicyclic Lactams via Beckmann Rearrangement and Their Antimicrobial Evaluation,” Current Bioactive Compounds 14, no. 4 (2018): 428–33.
  • R. Arora, R. Bala, P. Kumari, S. Sood, A. N. Yadav, N. Singh, and K. Singh, “Schmidt Reaction on Substituted 1-Indanones/N-Alkylation: Synthesis of Benzofused Six-Membered Ring Lactams and Their Evaluation as Antimicrobial Agents,” Letters in Organic Chemistry 15, no. 7 (2018): 606–13.
  • R. Bala, V. Devi, P. Singh, N. Kaur, P. Kaur, A. Kumar, A. N. Yadav, and K. Singh, “Regioselective Synthesis of Potent 4,5,6,7-Tetrahydroindazole Derivatives via Microwave-Assisted Vilsmeier–Haack Reaction and Their Antioxidant Activity Evaluation,” Letters in Organic Chemistry 16, no. 3 (2019): 194–201.
  • R. Bala, P. Kumari, S. Sood, A. Kumar, and K. Singh, “Convenient Vilsmeier–Haack Synthesis of Benzothiazolyl 4-Cyanopyrazoles,” Organic Preparations and Procedures International 51, no. 6 (2019): 547–52.
  • R. Bala, P. Kumari, S. Sood, V. Kumar, N. Singh, and K. Singh, “Phthaloyl Dichloride–DMF Mediated Synthesis of Benzothiazole‐Based 4‐Formylpyrazole Derivatives: Studies on Their Antimicrobial and Antioxidant Activities,” Journal of Heterocyclic Chemistry 55, no. 11 (2018): 2507–15.
  • R. Bala, P. Kumari, S. Sood, H. Phougat, A. Kumar, and K. Singh, “Pyrazole‐4‐Carboxylic Acids from Vanadium‐Catalyzed Chemical Transformation of Pyrazole‐4‐Carbaldehydes,” Journal of Heterocyclic Chemistry 56, no. 6 (2019): 1787–93.
  • R. Bala, P. Kumari, S. Sood, and K. Singh, “4-Formylpyrazoles: Applications in Organic Synthesis,” Mini-Reviews in Organic Chemistry 16, no. 2 (2019): 193–203.
  • A. K. Kaur, R. Bala, P. Kumari, S. Sood, and K. Singh, “Microwave Assisted Vilsmeier–Haack Reaction on Substituted Cyclohexanone Hydrazones: Synthesis of Novel 4,5,6,7-Tetrahydroindazole Derivatives,” Letters in Organic Chemistry 16, no. 3 (2019): 170–5.
  • P. Kumari, S. Sood, A. Kumar, and K. Singh, “Microwave‐Assisted Vilsmeier–Haack Synthesis of Pyrazole‐4‐Carbaldehydes,” Journal of Heterocyclic Chemistry 57, no. 2 (2020): 796–804.
  • K. Singh, “Applications of Indan-1,3-Dione in Heterocyclic Synthesis,” Current Organic Synthesis 13, no. 3 (2016): 385–407.
  • P. K. Sharma, K. Singh, S. Dhawan, and S. Singh, “Synthesis and Characterization of Some Novel 4-Formyl Pyrazolylthiazoles of Potential Medicinal Interest Using Vilsmeier–Haack Reaction,” Indian Journal of Chemistry 41A (2002): 2071–5.
  • K. Singh, S. Ralhan, P. K. Sharma, and S. N. Dhawan, “Vilsmeier–Haack Reaction on Hydrazones: A Convenient Synthesis of 4-Formylpyrazoles,” Journal of Chemical Research 2005, no. 5 (2005): 316–8.
  • K. Singh, and P. Sharma, “Synthesis, Characterization and Antimicrobial Study of Some Novel Fluorine Based 2-Aminothiazoles,” International Journal of Pharmacy and Pharmaceutical Sciences 6 (2014): 429–33.
  • S. Sood, R. Bala, V. Kumar, N. Singh, and K. Singh, “Iodine Mediated Synthesis of Thiabendazole Derivatives and Their Antimicrobial Evaluation,” Current Bioactive Compounds 14, no. 3 (2018): 273–7.
  • S. Sood, P. Kumari, A. N. Yadav, A. Kumar, and K. Singh, “Microwave-Assisted Synthesis and Biological Evaluation of Pyrazole-4-Carbonitriles as Antimicrobial Agents,” Journal of Heterocyclic Chemistry 57, no. 7 (2020): 2936–44.
  • K. Singh, P. K. Sharma, S. Dhawan, and S. P. Singh, “Synthesis and Characterisation of Some Novel Indeno[1,2-c]Pyrazoles,” Journal of Chemical Research 2005, no. 8 (2005): 526–9.
  • S. V. Bhaskaruni, S. Maddila, W. E. Van Zyl, and S. B. Jonnalagadda, “Ag2O on ZrO2 as a Recyclable Catalyst for Multicomponent Synthesis of Indenopyrimidine Derivatives,” Molecules 23, no. 7 (2018): 1648.
  • Brian C. Shook, Stefanie Rassnick, Melville C. Osborne, Scott Davis, Lori Westover, Jamie Boulet, Daniel Hall, Kenneth C. Rupert, Geoffrey R. Heintzelman, Kristin Hansen, et al. “In Vivo Characterization of a Dual Adenosine A2A/A1 Receptor Antagonist in Animal Models of Parkinson's Disease,” Journal of Medicinal Chemistry 53, no. 22 (2010): 8104–15.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.