82
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Preparation and Application of Highly Efficient and Reusable Nanomagnetic Catalyst Supported with Sulfonated-Hexamethylenetetramine for Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones

, , &
Pages 2410-2419 | Received 04 Aug 2020, Accepted 02 Oct 2020, Published online: 20 Oct 2020

References

  • K. Philippot and P. Serp, “Concepts in Nanocatalysis,” in Nanomaterials in Catalysis, 1st ed., Wiley-VCH, Weinheim, (2013), 1–54.
  • S. Chaturvedi, P. N. Dave, and N. K. Shah, “Applications of Nano-Catalyst in New Era,” Journal of Saudi Chemical Society 16, no. 3 (2012): 307–25.
  • S. B. Singh and P. K. Tandon, “Catalysis: A Brief Review on Nano-Catalyst,” Journal of Energy and Chemical Engineering 2, no. 3 (2014): 106–15.
  • (a) R. Ghorbani-Vaghei, S. Alavinia, and N. Sarmast, “Fe3O4@SiO2@propyl-ANDSA: A New Catalyst for the Synthesis of Tetrazoloquinazolines,” Applied Organometallic Chemistry 32 (2018): e4038; (b) R. Ghorbani-Vaghei, S. Alavinia, Z. Merati, and V. Izadkhah, “MNPs@SiO2‐Pr‐AP: A new catalyst for the Synthesis of 2‐Amino‐4‐aryl thiazole Derivatives,” Applied Organometallic Chemistry 32 (2018): e4127; (c) A. Kharazmi, R. Ghorbani-Vaghei, and S. Alavinia, “Synthesis of Pyrimidine Derivatives Catalyzed by Nanomagnetic Pyridinium-Tribromide Ionic Liquid,” Chemistry Select 5 (2020): 1424–30; (d) A. Fatehi, R. Ghorbani-Vaghei, S. Alavinia, and J. Mahmoodi, “Synthesis of Quinazoline Derivatives Catalyzed by a New Efficient Reusable Nanomagnetic Catalyst Supported with Functionalized Piperidinium Benzene-1,3-Disulfonate Ionic Liquid,” Chemistry Select 5 (2020): 944–51; (e) S. Alavinia, R. Ghorbani-Vaghei, J. Rakhtshah, J. Yousefi Seyf, and I. Ali Arabian, “Copper Iodide Nanoparticles-Decorated Porous Polysulfonamide Gel: As Effective Catalyst for Decarboxylative Synthesis of N-Arylsulfonamides,” Applied Organometallic Chemistry 34 (2020): e5449; (f) S. Alavinia and R. Ghorbani-Vaghei, “Synthesis of 3-Oxadiazole-substituted Imidazo[1,2-a]pyridines by Nickel Immobolized on Multifunctional Amphiphilic Porous Polysulfonamide-melamine,” New Journal of Chemistry 44 (2020): 13062–73; (g) S. Alavinia, R. Ghorbani-Vaghei, “Targeted Development of Hydrophilic Porous Polysulfonamide Gels with Catalytic Activity,” Journal of Physic and Chemistry of Solids 146 (2020): 109573–84; (h) F. Hamidi Dastjerdi, R. Ghorbani-Vaghei, and S. Alavinia, “Copper Iodide Nanoparticles Immobolized Porous Polysulfonamide: An Effective Nanocatalyst for Synthesis of Imidazo [1,2-a] Pyridines,” Catalysis Letter (2020). (i) S. Gorji, R. Ghorbani-Vaghei, Z. Toghraei-Semiromi, and S. Alavinia, “Synthesis of 5,8-Diaryl-5,7,8,9-Tetrahydropyrimido[5,4-e]Tetrazolo[1,5-a]Pyrimidin-6(4H)-One Derivatives Catalyzed by MNPs@SiO2-Pr-AP as a New Efficient Reusable Nanomagnetic Catalyst,” Polycyclic Aromatic Compounds (2019). doi: https://doi.org/10.1080/10406638.2019.1701050.
  • R. A. Harris, “Chemotherapy Drug Temozolomide Adsorbed onto Iron-Oxide (Fe3O4) Nanoparticles as Nanocarrier: A Simulation Study,” Journal of Molecular Liquids 288, (2019): 111084–91.
  • Y. Qiao, W. Ma, N. Theyssen, C. Chen, and Z. Hou, “Temperature-Responsive Ionic Liquids: Fundamental Behaviors and Catalytic Applications,” Chemical Reviews 117, no. 10 (2017): 6881–928.
  • (a) S. Toorchi Roudsari and K. Rad-Moghadam, “A Sulfonating Ionic Liquid for One-pot Pseudo Four-component Synthesis of Novel 3-Chlorosulfonyl-δ-sultones: A Novel Class of Fluorescent Compounds,” Tetrahedron 74 (2018): 4047–52; (b) K. Rad-Moghadam, S. A. R. Mousazadeh Hassani, and S. Toorchi Roudsari, “N-Methyl-2-pyrrolidonium chlorosulfonate: An Efficient Ionic-liquid Catalyst and Mild Sulfonating Agent For One-pot Synthesis of δ-sultones,” Journal of Molecular Liquids 218 (2016): 275–80.
  • R. L. Vekariya, “A Review of Ionic Liquids: Applications towards Catalytic Organic Transformations,” Journal of Molecular Liquids 227, (2017): 44–60.
  • X. Zhang, X. Li, X. Fan, X. Wang, D. Li, G. Qu, and J. Wang, “Ionic Liquid Promoted Preparation of 4H-Thiopyran and Pyrimidine Nucleoside-Thiopyran Hybrids through One-Pot Multi-Component Reaction of Thioamide,” Molecular Diversity 13, no. 1 (2009): 57–61.
  • (a) Z. Tashrifi, K. Rad-Moghadam, and M. Mehrdad, “Catalytic Performance of a New Brønsted Acidic Oligo(ionic liquid) in Efficient Synthesis of Pyrano[3,2-c]quinolines and Pyrano[2,3-d]pyrimidines,” Journal of Molecular Liquids 248 (2017): 278–85; (b) S. Yaghoubi Kalurazi, K. Rad-Moghadam, and S. Moradi, “Efficient Catalytic Application of a Binary Ionic Liquid Mixture in the Synthesis of Novel Spiro[4H-pyridine-oxindoles],” New Journal of Chemistry 41 (2017): 10291–8.
  • Y. Xia, Z.-Y. Yang, M.-J. Hour, S.-C. Kuo, P. Xia, K. F. Bastow, Y. Nakanishi, P. Nampoothiri, T. Hackl, E. Hamel, et al. “Antitumor Agents. Part 204: Synthesis and Biological Evaluation of Substituted 2-Aryl Quinazolinones,” Bioorganic & Medicinal Chemistry Letters 11, no. 9 (2001): 1193–6.
  • G. L. Neil, L. H. Li, H. H. Buskirk, and T. E. Moxlcy, Cancer Chemotherapy and Pharmacology 56, (1972): 163–73.
  • M. J. Hour, L. J. Huang, S. C. Kuo, Y. Xia, K. Bastow, Y. Nakanishi, E. Hamel, and K. H. Lee, “6-Alkylamino- and 2,3-Dihydro-3'-Methoxy-2-Phenyl-4-Quinazolinones and Related Compounds: their Synthesis, Cytotoxicity, and Inhibition of Tubulin Polymerization,” Journal of Medicinal Chemistry 43, no. 23 (2000): 4479–87.
  • P. M. Manoury, J. L. Binet, A. P. Dumas, F. Lefevre-Borg, and I. Cavero, “Synthesis and Antihypertensive Activity of a Series of 4-Amino-6,7-Dimethoxyquinazoline Derivatives,” Journal of Medicinal Chemistry 29, no. 1 (1986): 19–25.
  • E. Honkanen, A. Pippuri, P. Kairisalo, H. Thaler, M. Koivisto, and S. Tuomi, “New Practical Synthesis of Prazosin,” Journal of Heterocyclic Chemistry 17, no. 4 (1980): 797–805.
  • S. F. Campbell, M. J. Davey, J. D. Hardstone, B. N. Lewis, and M. J. Palmer, “2,4-Diamino-6,7-Dimethoxyquinazolines. 1. 2-[4-(1,4-Benzodioxan-2-Ylcarbonyl)Piperazin-1-yl] Derivatives as Alpha 1-Adrenoceptor Antagonists and Antihypertensive Agents,” Journal of Medicinal Chemistry 30, no. 1 (1987): 49–56.
  • (a) D. J. Connolly, D. Cusack, T. P. OSullivan, and P. J. Guiry, “Synthesis of Quinazolinones and Quinazolines,” Tetrahedron 61 (2005): 10153–202; (b) S. Guo, J. Zhai, F. Wang, and X. Fan, “One-pot Three-component Selective Synthesis of Isoindolo[1,2-a]quinazoline Derivatives via a Palladium-catalyzed Cascade Cyclocondensation/Cyclocarbonylation Sequence,” Organic Biomolecular Chemistry 15 (2017): 3674–80; (c) C. Wang, S. fu Li, H. Liu, and Y. Jiang, “Copper-Catalyzed Synthesis of Quinazoline Derivatives via Ullmann-Type Coupling and Aerobic Oxidation,” Journal of Organic Chemistry 75 (2010): 7936–8; (d) M. Dabiri, P. Salehi, and M. Bahramnejad, “Ecofriendly and Efficient One-Pot Procedure for the Synthesis of Quinazoline Derivatives Catalyzed by an Acidic Ionic Liquid under Aerobic Oxidation Conditions,” Synthetic Communications 40 (2010): 3214–25; (e) S. K. Panja and S. Saha, “Recyclable, Magnetic Ionic Liquid bmim[FeCl4]-catalyzed, Multicomponent, Solvent-free, Green Synthesis of Quinazolines,” RSC Advances 3 (2013):14495–500; (g) A. Maleki, M. Rabbani, and S. Shahrokh, “Preparation and Characterization of a Silica‐based Magnetic Nanocomposite and its Application as a Recoverable Catalyst for the One‐pot Multicomponent Synthesis of Quinazolinone Derivatives,” Applied Organometallic Chemistry 29 (2015): 809–14; (f) A. Maleki, M. Aghaei, H.R. Hafizi-Atabak, and M. Ferdowsi, “Ultrasonic Treatment of CoFe2O4@B2O3-SiO2 as a New Hybrid Magnetic Composite Nanostructure and Catalytic Application in the Synthesis of Dihydroquinazolinones,” Ultrasonics Sonochemistry 37 (2017): 260–6; (g) A. Maleki, T. Kari, and M. Aghaei, “Fe3O4@SiO2@TiO2-OSO3H: an Efficient Hierarchical Nanocatalyst for the Organic Quinazolines Syntheses,” Journal of Porous Material 24 (2017): 1481–97; (h) A. Moghimi, R. Hosseinzadeh Khanmiri, I. Omrani, and A. Shaaban, “A New Library of 4(3H)- and 4,4′(3H,3H′)-quinazolinones and 2-(5-alkyl-1,2,4-oxadiazol-3-yl)quinazolin-4(3H)-one Obtained from Diaminoglyoxime,” Tetrahedron Letters 54 (2013): 3956–9.
  • (a) M. Shiri, M. M. Heravi, H. Hamidi, M. A. Zolfigol, Z. Tanbakouchian, A. Nejatinezhad-Arani, S. A. Shintre, and N. A. Koorbanally, “Transition metal-free Synthesis of Quinolino[2′,3′:3,4]pyrazolo[5,1-b]Quinazolin-8(6H)-ones via Cascade Dehydrogenation and Intramolecular N-arylation,” Journal of Iranian Chemical Society 13 (2016): 2239–46; (b) P. Salehi, M. Dabiri, M. A. Zolfigol, and M. Baghbanzadeh, “A Novel Method for the One-Pot Three-Component Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones,” Tetrahedron Letters 46 (2005): 7051–3; (c) M. Dabiri, P. Salehi, M. Baghbanzadeh, M. A. Zolfigol, M. Agheb, and S. Heydari, “Silica Sulfuric Acid: An Efficient Reusable Heterogeneous Catalyst for the Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones in Water and under Solvent-free Conditions,” Catalysis Communications 9 (2008): 785–8; (d) M. A. Zolfigol, H. Ghaderi, S. Baghery, and L. Mohammadi, “Nanometasilica Disulfuric Acid (NMSDSA) and Nanometasilica Monosulfuric Acid Sodium Salt (NMSMSA) as Two Novel Nanostructured Catalysts: Applications in the Synthesis of Biginelli-type, Polyhydroquinoline and 2,3-Dihydroquinazolin-4(1H)-one Derivatives,” Journal of Iranian Chemical Society 13 (2016): 2239–46.
  • (a) J. Safari and S. Gandomi-Ravandi, “Microwave-accelerated Three Components Cyclocondensation in the Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones Promoted by Cu-CNTs,” Journal of Molecular Catalysis A: Chemical 371 (2013): 135–40; (b) J. Safari and S. Gandomi-Ravandi, “Application of the Ultrasound in the Mild Synthesis of Substituted 2,3-Dihydroquinazolin-4(1H)-ones Catalyzed by Heterogeneous Metal–MWCNTs Nanocomposites,” Journal of Molecular Structure 1072 (2014): 173–8; (c) K. Mishra, N. Basavegowda, and Y. R. Lee, “Access to Enhanced Catalytic Core–Shell CuO–Pd Nanoparticles for the Organic Transformations,” RSC Advances 6 (2016): 27974–82.
  • (a) M. Dabiri, P. Salehi, M. Bahramnejad, and M. Alizadeh, “A Practical and Versatile Approach Toward One-pot Synthesis of 2,3-Disubstituted 4(3H)-Quinazolinones" Monatshefte fur Chemie 141 (2010): 877–81; (b) P. Salehi, M. Dabiri, M. A. Zolfigol, and M. Baghbanzadeh, “A Novel Method for the One-Pot Three-Component Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones,” Synlett 7 (2005): 1155–7; (c) M. Dabiri, P. Salehi, S. Otokesh, M. Baghbanzadeh, G. Kozehgary, and A. A. Mohammadi, “Efficient Synthesis of Mono- and Disubstituted 2,3-Dihydroquinazolin-4(1H)-ones using KAl(SO4)2•12H2O as a Reusable Catalyst in Water and Ethanol,” Tetrahedron Letters 46 (2005): 6123–6.
  • R. Ghorbani-Vaghei and V. Izadkhah, “Preparation and Characterization of Hexamethylenetetramine‐Functionalized Magnetic Nanoparticles and Their Application as Novel Catalyst for the Synthesis of Pyranopyrazole Derivatives,” Applied Organometallic Chemistry 32, no. 2 (2018): e4025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.