69
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

KF/CP Nanoparticles Promoted Three Component Green Synthesis of Chromene Derivatives

, &
Pages 2632-2643 | Received 23 Aug 2020, Accepted 25 Oct 2020, Published online: 02 Dec 2020

References

  • (a) A. Deiters and S. F. Martin, “Microwave-Promoted Efficient Synthesis of Pyrano[3,2-c]chromen-5 (4H)-ones Under Catalyst and Solvent-Free Conditions.” Chemical Review 104 (2004): 2199; (b) X. F. Wu, H. Neumann, and M. Beller, “Synthesis of Heterocycles via Palladium-Catalyzed Carbonylations,” Chemical Review 113 (2013): 1–35.
  • G. R. Green, J. M. Evans, A. K. Vong, A. R. Katritzky, C. W. Rees, and E. F. Scriven, “KF-Al2O3 as an Efficient and Recyclable Basic Catalyst for the Synthesis of 4H-Pyran-3-Carboxylates and 5-Acetyl-4H-Pyrans,” Comprehensive Heterocyclic Chemistry II 5 (1995): 469.
  • W. O. Foye, Principi Di ChemicoFrmaceutica (Piccin, Padova, Italy, 1991).
  • C. S. Konkoy, D. B. Fick, S. X. Cai, N. C. Lan, and J. F.W. Keana, “PCT international application WO0075123 Chemical Abstracts, 2000, 134, Article ID29313a (2001).
  • A. Burgard, H. Lang, and U. Gerlach, “Asymmetric Synthesis of 4-Amino-3, 4-Dihydro-2, 2-Dimethyl-2H-1-Benzopyrans,” Tetrahedron 55, no. 24 (1999): 7555–62.
  • J. M. Evans, C. S. Fake, T. C. Hamilton, R. H. Poyser, and G. A. Showell, “Synthesis and Antihypertensive Activity of 6,7-Disubstituted trans-4-amino-3,4-dihydro-2,2-dimethyl-2H-1-benzopyran-3-ols,” Journal of Medicinal Chemistry 27, no. 9 (1984): 1127–31.
  • J. M. Evans, C. S. Fake, T. C. Hamilton, R. H. Poyser, and E. A. Watts, “Synthesis and Antihypertensive Activity of Substituted trans-4-amino-3,4-dihydro-2,2-dimethyl-2H-1-benzopyran-3-ols,” Journal of Medicinal Chemistry 26, no. 11 (1983): 1582–9.
  • A. Afantitis, G. Melagraki, H. Sarimveis, P. A. Koutentis, J. Markopoulos, and O. Igglessi-Markopoulou, “A Novel QSAR Model for Predicting Induction of Apoptosis by 4-Aryl-4H-Chromenes,” Bioorganic and Medicinal Chemistry 14, no. 19 (2006): 6686–94.
  • C. Conti, L. P. Monaco, and N. Desideri, “Design, Synthesis and In Vitro Evaluation of Novel Chroman-4-One, Chroman, and 2H-Chromene Derivatives as Human Rhinovirus Capsid-Binding Inhibitors Bioorg,” Medicinal Chemistry, 19 (2011): 7357–64.
  • W. Kemnitzer, J. Drewe, S. Jiang, H. Zhang, C. Crogan-Grundy, D. Labreque, M. Bubenick, G. Attardo, R. Denis, S. Lamothe, et al. “Discovery of 4-Aryl-4H-Chromenes as a New Series of Apoptosis Inducers Using a Cell- and Caspase-Based High Throughput Screening Assay. 4. Structure–Activity Relationships of N-Alkyl Substituted Pyrrole Fused at the 7,8-Positions,” Journal of Medicinal Chemistry 51, no. 3 (2008): 417–23.
  • A. A. Patchett, and R. P. Nargund, “Chapter 26. Privileged Structures – Anupdate,” Annual Reports in Medicinal Chemistry 35 (2000): 289–98.
  • S. G. Das, J. M. Doshi, D. Tian, S. N. Addo, B. Srinivasan, D. L. Hermanson, and C. Xing, “Structure–Activity Relationship and Molecular Mechanisms of Ethyl 2-Amino-4-(2-Ethoxy-2-Oxoethyl)-6-Phenyl-4h-Chromene-3-Carboxylate (Sha 14-1) and its Analogues,” Journal of Medicinal Chemistry 52, no. 19 (2009): 5937–49.
  • S. Kasibhatla, H. Gourdeau, K. Meerovitch, J. Drewe, S. Reddy, L. Qiu, H. Zhang, F. Bergeron, D. Bouffard, Q. Yang, et al. “Discovery and Mechanism of Action of a Novel Series of Apoptosis Inducers with Potential Vascular Targeting Activity,” Molecular Cancer Therapeutics 3, no. 11 (2004): 1365–74.
  • R. D. H. Murray, J. Mendez, S. A. Brown, The Natural Coumarins: Occurrence, Chemistry and Biochemistry (New York: Wiley, 1982), 21.
  • A. K. Okamoto, A. C. Gaudio, A. D. S. Marques, and Y. Takahata, “QSAR Study of Inhibition by Coumarins of IQ Induced Mutation in S. typhimurium TA98,” Journal of Molecular Structure: Theochem 725, no. 1–3 (2005): 231–8.
  • R. O’Kennedy and R. Zhorenes, Coumarins: Biology, Applications and Mode of Action (Chichester: Wiley, 1997).
  • M. Zabradnik, The Production and Application of Fluorescent Brightening Agents (New York: Wiley, 1992).
  • A. Kamal, S. F. Adil, J. R. Tamboli, B. Siddardha, and U. S. N. Murthy, “Synthesis of Coumarin Linked Naphthalimide Conjugates as Potential Anticancer and Antimicrobial Agents,” Letters in Drug Design and Discovery 6, no. 3 (2009): 201–9.
  • (a) Y. K. Tyagi, A. Kumar, H. G. Raj, P. Vohra, G. Gupta, R. Kumari, P. Kumar, and R. K. Gupta, “A Convenient Synthesis of Some Coumarin Derivatives Using SnCl2 · 2H2O as Catalyst,” European Journal of Medicinal Chemistry 40, no. 413 (2005); (b) C. A. Kontogiorgis, K. Savvoglou, and D. J. Hadjipavlou-Litina, “Antiinflammatory and Antioxidant Evaluation of Novel Coumarin Derivatives,” Journal of Enzyme Inhibitors in Medicinal Chemistry 21 (2006): 21.
  • (a) D. E. Zembower, S. Liao, M. T. Flavin, Z. Q. Xu, T. L. Stup, R. W. Buckheit, A. Khilevich, A. A. Mar, and A. K. Sheinkman, “Structural Analogues of the Calanolide Anti-HIV Agents. Modification of the Trans-10,11-Dimethyldihydropyran-12-ol Ring (Ring C),” Journal of Medicinal Chemistry, 6, no. 40 (1997): 1005–17; (b) N. A. Al-Masoudi, “Amino acid Derivatives Part 1. Synthesis, Antiviral and Antitumor Evaluation of New Alpha-Amino Acid Esters Bearing Coumarin Side Chain,” Acta Pharmaceutica 56, no. 2 (2006): 175–88.
  • G. Cravotto, G. M. Nano, G. Palmisano, and S. Tagliapietra, “An Asymmetric Approach to Coumarin Anticoagulants via Hetero-Diels–Alder Cycloaddition,” Tetrahedron: Asymmetry 12, no. 5 (2001): 707–9.
  • (a) H. H. Sayed, A. H. Shamroukh, and A. E. Rashad, “Synthesis and Biological Evaluation of Some Pyrimidine, Pyrimido [2, 1-b][1, 3] thiazine and thiazolo [3, 2-a] pyrimidine derivatives,” Acta Pharmaceutics 56 (2006): 231; (b) S. Sardari, Y. Mori, K. Horita, R. G. Micetich, S. Nishibe, and M. Daneshtalab, “Synthesis and Antifungal Activity of Coumarins and Angular Furanocoumarins,” Bioorganic and Medicinal Chemistry 7 (1999): 1933.
  • C. A. Kontogiorgis, and D. J. Hadjipavlou-Litina, “Synthesis and Antiinflammatory Activity of Coumarin Derivatives,” Journal of Medicinal Chemistry 48, no. 20 (2005): 6400–8.
  • F. Leonetti, A. Favia, A. Rao, R. Aliano, A. Paluszcak, R. W. Hartmann, and A. Carotti, “Design, Synthesis, and 3D QSAR of Novel Potent and Selective Aromatase Inhibitors,” Journal of Medicinal Chemistry 47, no. 27 (2004): 6792–803.
  • L. M. Kabeya, A. A. de Marchi, A. Kanashiro, N. P. Lopes, C. H. T. P. da Silva, M. T. Pupo, and Y. M. Lucisano-Valima, “Inhibition of Horseradish Peroxidase Catalytic Activity by New 3-Phenylcoumarin Derivatives: Synthesis and Structure–Activity Relationships,” Bioorganic & Medicinal Chemistry 15, no. 3 (2007): 1516–24.
  • L. Piazzi, A. Cavalli, F. Colizzi, F. Belluti, M. Bartolini, F. Mancini, M. Recanatini, V. Andrisano, and A. Rampa, “Multi-Target-Directed Coumarin Derivatives: hAChE and BACE1 Inhibitors as Potential Anti-Alzheimer Compounds,” Bioorganic & Medicinal Chemistry Letters 18, no. 1 (2008): 423–6.
  • K. Harada, H. Kubo, Y. Tomigahara, K. Nishioka, J. Takahashi, M. Momose, S. Inoue, and A. Kojima, “Coumarins as Novel 17 Beta-Hydroxysteroid Dehydrogenase Type 3 Inhibitors for Potential Treatment of Prostate Cancer,” Bioorganic & Medicinal Chemistry Letters 20, no. 1 (2010): 272–5.
  • S. Ravichandran, “A New Approach to the Synthesis of Chromene Derivatives,” Synthetic Communications 31, no. 8 (2001): 1233–5.
  • (a) Q. Wang and M. G. Finn, “Synthesis of 2H-Chromenes and 1, 2-Dihydroquinolines from Aryl Aldehydes, Amines, and Alkenylboron Compounds,” Organic Letters 252 (2000): 4063–5; (b) N. A. Petasis and A. N. Butkevich, “Synthesis of 2H-Chromenes and 1, 2-Dihydroquinolines from Aryl Aldehydes, Amines, and Alkenylboron Compounds,” Journal of Organometallic Chemistry 694 (2009): 1747.
  • N. Majumdar, K. A. Korthals, and W. D. Wulff, “Simultaneous Synthesis of Both Rings of Chromenes via a Benzannulation/o-Quinone Methide Formation/Electrocyclization Cascade,” Journal of the American Chemical Society 134, no. 2 (2012): 1357–62.
  • S. Kim, D. Kang, C.-H. Lee, and P. H. Lee, “Synthesis of Substituted Coumarins via Brønsted Acid Mediated Condensation of Allenes with Substituted Phenols or Anisoles,” The Journal of Organic Chemistry 77, no. 15 (2012): 6530–7.
  • B. Schmidt, S. Krehl, A. Kelling, and U. Schilde, “Synthesis of 8-Aryl-Substituted Coumarins Based on Ring-Closing Metathesis and Suzuki–Miyaura Coupling: Synthesis of a Furyl Coumarin Natural Product from Galipea panamensis,” The Journal of Organic Chemistry 77, no. 5 (2012): 2360–7.
  • (a) D. R. Gauta, J. Protopappas, K. C. Fylaktakidou, K. E. Litinas, D. N. Nicolaides, and C. A. Tsoleridis, “Unexpected One-Pot Synthesis of New Polycyclic Coumarin [4, 3-c] Pyridine Derivatives via a Tandem Hetero-Diels–Alder and 1, 3-Dipolar Cycloaddition Reaction,” Tetrahedron Letters 50 (2009): 448; (b) K. C. Majumdar, S. Samanta, I. Ansary, and B. Roy, “An Unusual One-Pot Synthesis of 3-Benzoylcoumarins and Coumarin-3-Carbaldehydes from 2-Hydroxybenzaldehydes Under Esterification Conditions,” RSC Advances 2 (2012): 2137; (c) M. Roussaki, C. A. Kontogiorgis, D. J. Hadjipavlou-Litina, S. Hamilakis, and A. Detsi, “A Novel Synthesis of 3-Aryl Coumarins and Evaluation of their Antioxidant and Lipoxygenase Inhibitory Activity,” Bioorganic and Medicinal Chemistry Letters 20 (2010): 3889; (d) A. R. Katritzky, T. S. Ibrahim, S. R. Tala, N. E. Abo-Dya, Z. K. Abdel-Samii, and S. A. El-Feky, “Synthesis of Coumarin Conjugates of Biological Thiols for Fluorescent Detection and Estimation,” Synthesis 9 (2011): 1494; (e) V. S. Moshkin, V. Y. Sosnovskikh, and G. V. Röschenthaler, “Nucleophilic Properties of a Nonstabilizedazomethineylide Derived from Sarcosine and Cyclohexanone. A Novel Domino Reaction Leading to Substituted 4-Aryl-2 ….” Tetrahedron Letters 53 (2012): 3568; (f) G. Pal, S. Paul, and A. R. Das, Alum-Catalyzed Synthesis of 3-(1H-Pyrrol-2-yl)-2H-chromen-2-ones: A Water–PEG 400 Binary Solvent Mediated, One-Pot, Three-Component Protocol,” Synthesis 45 (2013): 1191.
  • K. Tanaka and F. Toda, “Solvent-Free Organic Synthesis,” Chemical Reviews 100, no. 3 (2000): 1025–74.
  • F. Shirini, K. Marjani, and H. T. Nahzomi, “Silica Triflate as an Efficient Catalyst for the Solvent-Free Synthesis of 3, 4-Dihydropyrimidin-2 (1H)-Ones,” Arkivoc 2007, no. 1 (2007): 51–7.
  • G. Thirunarayanan and G. Vanangamudi, “Synthesis of Some 4-Bromo-1-Naphthyl Chalcones Using Silica-Sulfuric Acid Reagent under Solvent Free Conditions,” Arkivoc 2006, no. 12 (2006): 58–64.
  • H. Sajjadi-Ghotbabadi, S. Javanshir, and F. Rostami-Charati, “Nano KF/Clinoptilolite: An Effective Heterogeneous Base Nanocatalyst for Synthesis of Substituted Quinolines in Water,” Catalysis Letters 146, no. 2 (2016): 338–44.
  • B. Maleki, H. Natheghi, R. Tayebee, H. Alinezhad, A. Amiri, S. A. Hossieni, and S. M. M. Nouri, “Synthesis and Characterization of Nanorod Magnetic Co–Fe Mixed Oxides and its Catalytic Behavior towards One-Pot Synthesis of Polysubstituted Pyridine Derivatives,” Polycyclic Aromatic Compounds 40, no. 3 (2020): 633–43.
  • B. Maleki, and H. Veisi, “Facile and Efficient Synthesis of Bicyclic ortho-Aminocarbonitrile Derivatives Using Nanostructured Diphosphate Na2CaP2O7,” Organic Preparations and Procedures International 52, no. 3 (2020): 232–7.
  • B. Maleki, and S. Sheikh, “One-Pot Synthesis of 2-Amino-2-Chromene and 2-Amino-3-Cyano-4H-Pyran Derivatives Promoted by Potassium Fluoride,” Organic Preparations and Procedures International 47, no. 5 (2015): 368–78.
  • R. Tayebee, M. Jarrahi, B. Maleki, M. Kargar Razi, Z. B. Mokhtari, and S. M. Baghbanian, “A New Method for the Preparation of 1,3,5-Triarylbenzenes Catalyzed by Nanoclinoptilolite/HDTMA,” RSC Advances 5, no. 15 (2015): 10869–77.
  • A. Jamshidi, B. Maleki, F. M. Zonoz, and R. Tayebee, “HPA-Dendrimer Functionalized Magnetic Nanoparticles (Fe3O4@D-NH2-HPA) as a Novel Inorganic-Organic Hybrid and Recyclable Catalyst for the One-Pot Synthesis of Highly Substituted Pyran Derivatives,” Materials Chemistry and Physics 209, (2018): 46–59.
  • S. Rostamizadeh, M. Nojavan, R. Aryan, E. Isapoor, M. Azad, “Amino Acid-Based Ionic Liquid Immobilized on α-Fe2O3-MCM-41: An Efficient Magnetic Nanocatalyst and Recyclable Reaction Media for the Synthesis of Quinazolin-4 …,” Journal of Molecular Catalysis A: Chemical. 374-375, (2013): 102–10.
  • D. Beydoun, R. Amal, G. Low, and S. J. McEvoy, “Role of Nanoparticles in Photocatalysis,” Journal of Nanoparticle Research 1, no. 4 (1999): 439–58.
  • a) M. A. Khalilzadeh, A. Hosseini, and A. Pilevar, Potassium Fluoride Supported on Natural Nanoporous Zeolite: A New Solid Base for the Synthesis of Diaryl Ethers. European Journal of Organic Chemistry 8 (2011): 1587; b) S. Salmanpour, M. A. Khalilzadeh, and A. Hosseini, “KF/Clinoptilolite: An Efficient Promoter for the Synthesis of Thioethers,” Combinatorial Chemistry & High Throughput Screening 16 (2013): 339; c) M. A. Khalilzadeh, H. Keipour, A. Hosseini, and D. Zareyee, “KF/Clinoptilolite, An Effective Solid Base in Ullmann Ether Synthesis Catalyzed by CuO Nanoparticles,” New Journal of Chemistry 38 (2014): 42; d) S. Hallajian, M. A. Khalilzadeh, M. Tajbakhsh, E. Alipour, and Z. Safaei, “Nano Clinoptilolite: Highly Efficient Catalyst for the Synthesis of Chromene Derivatives Under Solvent-Free Conditions,” Combinatorial Chemistry and High Throughput Screening 18, no. 5: 486.
  • W. L. Xie, and X. M. Huang, “Synthesis of Biodiesel from Soybean Oil Using Heterogeneous KF/ZnO Catalyst,” Catalysis Letters 107, no. 1–2 (2006): 53–9.
  • L. J. Gao, G. Y. Teng, J. H. Lv, and G. M. Xiao, “Biodiesel Synthesis Catalyzed by the KF/Ca − Mg − Al Hydrotalcite Base Catalyst,” Energy and Fuels 24, no. 1 (2010): 646–51.
  • S. Hu, Y. Guan, Y. Wang, and H. Han, “Nano-Magnetic Catalyst KF/CaO–Fe3O4 for Biodiesel Production,” Applied Energy 88, no. 8 (2011): 2685–90.
  • T. Ando, and J. Yamawaki, “Potassium Fluoride on Celite. A Versatile Reagent for C-, N-, O-, and S-Alkylations,” Chemistry Letters 8, no. 1 (1979): 45–6.
  • J. H. Zhu, Y. Chun, Y. Qin, and Q. H. Xu, “An Investigation of KF Modification to Generate Strong Basic Sites on NaY Zeolite,” Microporous and Mesoporous Materials 24, no. 1–3 (1998): 19–28.
  • F. M. Asseid, C. V. A. Duke, and J. M. Miller, “A 19F Magic Angle Spinning Nuclear Magnetic Resonance and Infrared Analysis of the Adsorption of Alkali Metal Fluorides onto Montmorillonite Clay,” Canadian Journal of Chemistry 68, no. 8 (1990): 1420–4.
  • M. Zahouily, B. Bahlaouane, M. Aadil, A. Rayadh, and S. Sebti, “Lewis Acid-Doped Natural Phosphate: New Catalysts for the One‐Pot Synthesis of 3,4‐Dihydropyrimdin‐2(1H)‐One,” Organic Process and Research (2004): 278.
  • L. Gao, G. Teng, G. Xiao, and R. Wei, “Biodiesel from Palm Oil via Loading KF/Ca–Al Hydrotalcite Catalyst,” Biomass and Bioenergy 34, no. 9 (2010): 1283–8.
  • J. V. Smith, “Topochemistry of Zeolites and Related Materials. 1. Topology and Geometry,” Chemical Reviews 88, no. 1 (1988): 149–82.
  • L. L. Ames, American Mineralogist 45 (1960): 689.
  • J. Balou, M. A. Khalilzadeh, and D. Zareyee, “KF/Nano-Clinoptilolite Catalyzed Aldol-Type Reaction of Aldehydes with Ethyl Diazoacetate,” Catalysis Letters 147, no. 10 (2017): 2618.
  • M. A. Khalilzadeh, H. Sadeghifar, and R. Venditti, “Natural Clinoptilolite/KOH: An Efficient Heterogeneous Catalyst for Carboxymethylation of Hemicellulose,” Industrial and Engineering Chemistry Research 58, no. 27 (2019): 11680–8.
  • J. Ghanaat, M. A. Khalilzadeh, and D. Zareyee, “KF/CP NPs as an Efficient Nanocatalyst for the Synthesis of 1,2,4-Triazoles: Study of Antioxidant and Antimicrobial Activity,” Eurasian Chemical Communications 2, no. 2 (2020): 202–12.
  • D. Zareyee and M. A. Khalilzadeh, “KF/Clinoptilolite Nanoparticles as an Efficient Nanocatalyst for the Strecker Synthesis of α-Aminonitriles Razieh Oladee,” Monatsheftefür Chemie – Chemical Monthly 151, no. 4 (2020): 611–5.
  • M. Amirsoleimani, M. A. Khalilzadeh, and D. Zareyee, “Preparation and Catalytic Evaluation of a Palladium Catalyst Deposited over Modified Clinoptilolite (Pd@MCP) for Chemoselective N-Formylation and N-Acylation of Amines,” Journal of Molecular Structure 1225 (2021): 129076.
  • H. Keipour, A. Hosseini, M. A. Khalilzadeh, and T. Ollevier, “Ultrasound-Promoted Knoevenagel Condensation Catalyzed by KF-Clinoptiloliteand Thierry Ollevier,” Letters in Organic Chemistry 12, no. 9 (2015): 645–50.
  • H. Keipour, M. A. Khalilzadeh, A. Hosseini, A. Pilevar, and D. Zareyee, “An Active and Selective Heterogeneous Catalytic System for Michael Addition,” Chinese Chemical Letters 23, no. 5 (2012): 537–40.
  • F. Khaleghi, F. R. Charati, W. Ahma Yaacob, and M. A. Khalilzadeh, “A New Bioactive Compound from the Roots of Petasites Hybridus. LailyBin Din,” Brian Skelton, Mohamed Makha Phytochemistry Letters 4, no. 3 (2011): 254–8.
  • F. Khaleghi, I. Jantan, L. B. Din, W. A. Yaacob, M. A. Khalilzadeh, and S. N. Bukhari, “Immunomodulatory Effects of 1-(6-Hydroxy-2-isopropenyl-1-benzofuran-5-yl)-1-ethanone from Petasites Hybridus and its Synthesized Benzoxazepine Derivatives,” Journal of Natural Medicines 68, no. 2 (2014): 351–7.
  • M. A. Khalilzadeh, I. Yavari, Z. Hossaini, and H. Sadeghifar, “N-Methylimidazole-Promoted Efficient Synthesis of 1,3-Oxazine-4-Thiones under Solvent-Free Conditions,” Monatshefte Für Chemie – Chemical Monthly 140, no. 4 (2009): 467–71.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.