144
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis, Characterization, and Biological Evaluation of Osmium(IV) Pyrazole Carbothioamide Complexes

, ORCID Icon, , ORCID Icon &
Pages 2991-3007 | Received 19 Oct 2019, Accepted 14 Nov 2020, Published online: 02 Dec 2020

References

  • J. M. Gichumbi and H. B. Friedrich, “Half-Sandwich Complexes of Platinum Group Metals (Ir, Rh, Ru and Os) and Some Recent Biological and Catalytic Applications,” Journal of Organometallic Chemistry 866, (2018): 123–43.
  • M. Hanif, S. Moon, M. P. Sullivan, S. Movassaghi, M. Kubanik, D. C. Goldstone, T. Söhnel, S. M. F. Jamieson, and C. G. Hartinger, “Anticancer Activity of Ru- and Os(Arene) Compounds of a Maleimide-Functionalized Bioactive Pyridinecarbothioamide Ligand,” Journal of Inorganic Biochemistry 165, (2016): 100–7.
  • J. Dong, Q. Zhang, Z. Wang, G. Huang, and S. Li, “Recent Advances in the Development of Indazole-Based Anticancer Agents,” Chemmedchem 13, no. 15 (2018): 1490–507.
  • D. Aucamp, S. V. Kumar, D. C. Liles, M. A. Fernandes, L. Harmse, and D. I. Bezuidenhout, “Synthesis of Heterobimetallic Gold(i) Ferrocenyl-Substituted 1,2,3-Triazol-5-Ylidene Complexes as Potential Anticancer Agents,” Dalton Transactions (Cambridge, England : 2003) 47, no. 45 (2018): 16072–81.
  • A. Gatti, A. Habtemariam, I. Romero-Canelón, J.-I. Song, B. Heer, G. J. Clarkson, D. Rogolino, P. J. Sadler, and M. Carcelli, “Half-Sandwich Arene Ruthenium(II) and Osmium(II) Thiosemicarbazone Complexes: Solution Behavior and Antiproliferative Activity,” Organometallics 37, no. 6 (2018): 891–9.
  • C. C. Konkankit, S. C. Marker, K. M. Knopf, and J. J. Wilson, “Anticancer Activity of Complexes of the Third Row Transition Metals, Rhenium, Osmium, and Iridium,” Dalton Transactions (Cambridge, England: 2003) 47, no. 30 (2018): 9934–74.
  • S. Shahraki, M. Saeidifar, F. Shiri, and A. Heidari, “Synthesis, Characterization, Cytotoxicity and Detailed HSA Interaction of New Zinc(II) Complexes Containing Dithiocarbamate and Heterocyclic N-Donor Ligands,” Polycyclic Aromatic Compounds 39, no. 3 (2019): 220–37.
  • S. Alcaro, M. L. Bolognesi, A. T. García-Sosa, and S. Rapposelli, “Editorial: Multi-*Target-Directed Ligands (MTDL) as Challenging Research Tools in Drug Discovery: From Design to Pharmacological Evaluation,” Frontiers in Chemistry 7, (2019): 71.
  • A. Arsiwala, A. Castro, S. Frey, M. Stathos, and R. S. Kane, “Designing Multivalent Ligands to Control Biological Interactions: From Vaccines and Cellular Effectors to Targeted Drug Delivery,” Chemistry, an Asian Journal 14, no. 2 (2019): 244–55.
  • N. E. Md Yusof, B. T. Ravoof, R. E. Tiekink, A. Veerakumarasivam, A. K. Crouse, I. M. Mohamed Tahir, and H. Ahmad, “Synthesis, Characterization and Biological Evaluation of Transition Metal Complexes Derived from N, S Bidentate Ligands,” International Journal of Molecular Sciences 16, no. 12 (2015): 11034–54.
  • B. Shafaatian, S. S. Mousavi, and S. Afshari, “Synthesis, Characterization, Spectroscopic and Theoretical Studies of New Zinc(II), Copper(II) and Nickel(II) Complexes Based on Imine Ligand Containing 2-Aminothiophenol Moiety,” Journal of Molecular Structure 1123, (2016) : 191–8.
  • T. V. Sravanthi, and S. L. Manju, “Indoles – A Promising Scaffold for Drug Development,” European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences 91, (2016) : 1–10.
  • D. G. Goswami, N. Tewari-Singh, D. Dhar, D. Kumar, C. Agarwal, D. A. Ammar, R. Kant, R. W. Enzenauer, J. M. Petrash, and R. Agarwal, “Nitrogen Mustard-Induced Corneal Injury Involves DNA Damage and Pathways Related to Inflammation, Epithelial-Stromal Separation, and Neovascularization,” Cornea 35, no. 2 (2016): 257–66.
  • P. Patel, J. Pillai, N. Darji, and B. Patel, “Recent Advance in Anti Inflammatory Activity of Benzothiazole Derivatives,” International Journal of Drug Research and Technology 2, no. 2 (2012), 170–76.
  • D. Havrylyuk, O. Roman, and R. Lesyk, “Synthetic Approaches, Structure Activity Relationship and Biological Applications for Pharmacologically Attractive Pyrazole/Pyrazoline-Thiazolidine-Based Hybrids,” European Journal of Medicinal Chemistry 113, (2016): 145–66.
  • O. Dömötör, M. A. Kiss, G. T. Gál, N. V. May, G. Spengler, M. Nové, A. Č. Gašparović, É. Frank, and É. A. Enyedy, “Solution Equilibrium, Structural and Cytotoxicity Studies on Ru(η6-p-Cymene) and Copper Complexes of Pyrazolyl Thiosemicarbazones,” Journal of Inorganic Biochemistry 202, (2020): 110883.
  • M. F. El Shehry, M. M. Ghorab, S. Y. Abbas, E. A. Fayed, S. A. Shedid, and Y. A. Ammar, “Quinoline Derivatives Bearing Pyrazole Moiety: Synthesis and Biological Evaluation as Possible Antibacterial and Antifungal Agents,” European Journal of Medicinal Chemistry 143, (2018): 1463–73.
  • L.-G. Yu, T.-F. Ni, W. Gao, Y. He, Y.-Y. Wang, H.-W. Cui, C.-G. Yang, and W.-W. Qiu, “The Synthesis and Antibacterial Activity of Pyrazole-Fused Tricyclic Diterpene Derivatives,” European Journal of Medicinal Chemistry 90, (2015): 10–20.
  • G. Kumar, O. Tanwar, J. Kumar, M. Akhter, S. Sharma, C. R. Pillai, M. M. Alam, and M. S. Zama, “Pyrazole-Pyrazoline as Promising Novel Antimalarial Agents: A Mechanistic Study,” European Journal of Medicinal Chemistry 149, (2018): 139–47.
  • S. M. Gomha, T. A. Salah, and A. O. Abdelhamid, “Synthesis, Characterization, and Pharmacological Evaluation of Some Novel Thiadiazoles and Thiazoles Incorporating Pyrazole Moiety as Anticancer Agents,” Monatshefte Für Chemie – Chemical Monthly 146, no. 1 (2015): 149–58.
  • M. M. Aghazadeh Attari, C. Ostadian, A. A. Saei, A. Mihanfar, S. G. Darband, S. Sadighparvar, M. Kaviani, H. Samadi, B. Yousefi, and M. Majidinia, “DNA Damage Response and Repair in Ovarian Cancer: Potential Targets for Therapeutic Strategies,” DNA Repair 80, (2019): 59–84.
  • E. V. Minten and D. S. Yu, “DNA Repair: Translation to the Clinic,” Clinical Oncology (Royal College of Radiologists (Great Britain)) 31, no. 5 (2019): 303–10.
  • Z. Zhao, J. Zhang, S. Zhi, W. Song, and J. a. Zhao, “Novel Binuclear and Trinuclear Metal (II) Complexes: DNA Interactions and in Vitro Anticancer Activity through Apoptosis,” Journal of Inorganic Biochemistry 197, (2019): 110696.
  • M. Sankarganesh, J. Dhaveethu Raja, K. Sakthikumar, R. V. Solomon, J. Rajesh, S. Athimoolam, and V. Vijayakumar, “New Bio-sensitive and Biologically Active Single Crystal of Pyrimidine Scaffold Ligand and its Gold and Platinum Complexes: DFT, Antimicrobial, Antioxidant, DNA Interaction, Molecular Docking with DNA/BSA and Anticancer Studies,” Bioorganic Chemistry 81, (2018): 144–56.
  • B. J. Pages, D. L. Ang, E. P. Wright, and J. R. Aldrich-Wright, “Metal Complex Interactions with DNA,” Dalton Transactions 44, no. 8 (2015): 3505–26.
  • B. Annaraj, C. Balakrishnan, and M. A. Neelakantan, “Synthesis, Structure Information, DNA/BSA Binding Affinity and in Vitro Cytotoxic Studies of Mixed Ligand Copper(II) Complexes Containing a Phenylalanine Derivative and Diimine co-Ligands,” Journal of Photochemistry and Photobiology. B, Biology 160, (2016): 278–91.
  • U. Ndagi, N. Mhlongo, and M. E. Soliman, “Metal Complexes in Cancer Therapy – An Update from Drug Design Perspective,” Drug Design, Development and Therapy 11, (2017): 599–616.
  • R. Subashini, F. R. Nawaz Khan, M. Gund, V. R. Hathwar, and S. Weng Ng, “2-Chloro-6-Methoxyquinoline-3-Carbaldehyde,” 65, (2009): 2723.
  • F. Boudjellal, H. B. Ouici, A. Guendouzi, O. Benali, and A. Sehmi, “Experimental and Theoretical Approach to the Corrosion Inhibition of Mild Steel in Acid Medium by a Newly Synthesized Pyrazole Carbothioamide Heterocycle,” Journal of Molecular Structure 1199, (2020): 127051.
  • A. Sehmi, H. B. Ouici, A. Guendouzi, M. Ferhat, O. Benali, and F. Boudjellal, “Corrosion Inhibition of Mild Steel by Newly Synthesized Pyrazole Carboxamide Derivatives in HCl Acid Medium: Experimental and Theoretical Studies,” Journal of the Electrochemical Society 167, no. 15 (2020): 155508.
  • P. A. Lay, and A. M. Sargeson, “Tris(1,2-Ethanediamine) Complexes of Osmium(IV), Osmium(III) and Osmium(II): Oxidative Dehydrogenation Reactions,” Inorganica Chimica Acta 198–200, (1992): 449–60.
  • K. Maruyama, Y. Mishima, K. Minagawa, and J. Motonaka, “Electrochemical and DNA-Binding Properties of Dipyridophenazine Complexes of Osmium(II),” 510, (2001): 96–102.
  • B. Kavitha, M. Sravanthi, and P. Saritha Reddy, “DNA Interaction, Docking, Molecular Modelling and Biological Studies of o-Vanillin Derived Schiff Base Metal Complexes,” Journal of Molecular Structure 1185, (2019): 153–67.
  • M. Dehkhodaei, M. Sahihi, H. Rudbari, and F. Momenbeik, “DNA and HSA Interaction of Vanadium (IV), Copper (II), and Zinc (II) Complexes Derived from an Asymmetric Bidentate Schiff-Base Ligand: Multi Spectroscopic, Viscosity Measurements, Molecular Docking, and ONIOM Studies,” Journal of Biological Inorganic Chemistry 23, (2017), 181–92.
  • Z. Mirzaei-Kalar, “In Vitro Binding Interaction of Atorvastatin with Calf Thymus DNA: Multispectroscopic, Gel Electrophoresis and Molecular Docking Studies,” Journal of Pharmaceutical and Biomedical Analysis 161, (2018): 101–9.
  • S. Banerjee, M. Selim, A. Saha, and K. K. Mukherjea, “Radiation Induced DNA Damage and Its Protection by a Gadolinium(III) Complex: Spectroscopic, Molecular Docking and Gel Electrophoretic Studies,” International Journal of Biological Macromolecules 127, (2019): 520–8.
  • S. Bi, H. Zhou, J. Wu, and X. Sun, “Micronomicin/Tobramycin Binding with DNA: Fluorescence Studies Using of Ethidium Bromide as a Probe and Molecular Docking Analysis,” Journal of Biomolecular Structure & Dynamics 37, no. 6 (2019): 1464–76.
  • N. M. Mallikarjuna, J. Keshavayya, and B. N. Ravi, “Synthesis, Spectroscopic Characterization, Antimicrobial, Antitubercular and DNA Cleavage Studies of 2-(1H-Indol-3-Yldiazenyl)-4, 5, 6, 7-Tetrahydro-1, 3-Benzothiazole and Its Metal Complexes,” Journal of Molecular Structure 1173, (2018): 557–66.
  • T. Ur Rehman, A-U Khan, A. Abbas, J. Hussain, F. U. Khan, K. Stieglitz, and S. Ali, “Investigation of Nepetolide as a Novel Lead Compound: Antioxidant, Antimicrobial, Cytotoxic, Anticancer, anti-Inflammatory, Analgesic Activities and Molecular Docking Evaluation,” Saudi Pharmaceutical Journal 26, no. 3 (2018): 422–9.
  • K. P. Thakor, M. V. Lunagariya, B. S. Bhatt, and M. N. Patel, “Fluorescence and Absorption Studies of DNA-Pd(II) Complex Interaction: Synthesis, Spectroanalytical Investigations and Biological Activities ,” Luminescence: The Journal of Biological and Chemical Luminescence 34, no. 1 (2019): 113–24.
  • S. Swavey, K. Morford, M. Tsao, K. Comfort, and M. K. Kilroy, “Heteroleptic Monometallic and Trimetallic Ruthenium(II) Complexes Incorporating a π-Extended Dipyrrin Ligand: Light-Activated Reactions with the A549 Lung Cancer Cell Line,” Journal of Inorganic Biochemistry 175, (2017): 101–9.
  • P. Zhang, and H. Huang, “Future Potential of Osmium Complexes as Anticancer Drug Candidates, Photosensitizers and Organelle-Targeted Probes,” Dalton Transactions (Cambridge, England: 2003) 47, no. 42 (2018): 14841–54.
  • K. Maruyama, Y. Mishima, K. Minagawa, and J. Motonaka, “Electrochemical and DNA-Binding Properties of Dipyridophenazine Complexes of Osmium(II),” Journal of Electroanalytical Chemistry 510, no. 1–2 (2001): 96–102.
  • B. H. Pursuwani, B. S. Bhatt, F. U. Vaidya, C. Pathak, and M. N. Patel, “Tetrazolo[1,5-a]Quinoline Moiety-Based Os(IV) Complexes: DNA Binding/Cleavage, Bacteriostatic and Photocytotoxicity Assay,” Journal of Biomolecular Structure and Dynamics (2020): 1–10.doi: 10.1080/07391102.2020.1756912
  • W. Ginzinger, G. Mühlgassner, V. Arion, M. Jakupec, A. Roller, M. Galanski, M. Reithofer, W. Berger, and B. Keppler, “A SAR Study of Novel Antiproliferative Ruthenium and Osmium Complexes with Quinoxalinone Ligands in Human Cancer Cell Lines,” Journal of Medicinal Chemistry 55, no. 7 (2012): 3398–413.
  • S. B. Gajera, J. V. Mehta, D. N. Kanthecha, R. R. Patel, and M. N. Patel, “Novel Cytotoxic Oxovanadium(IV) Complexes: Influence of Pyrazole-Incorporated Heterocyclic Scaffolds on Their Biological Response,” Applied Organometallic Chemistry 31, no. 11 (2017): e3767.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.