353
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Design, Synthesis, Biological Evaluation and Molecular Docking Studies of 1,4-Disubstituted 1,2,3-Triazoles: PEG-400:H2O Mediated Click Reaction of Fluorescent Organic Probes under Ultrasonic Irradiation

, , , , , , , , & show all
Pages 3953-3974 | Received 29 Nov 2020, Accepted 12 Jan 2021, Published online: 05 Feb 2021

References

  • B. Maleki, R. Nejat, H. Alinezhad, S. M. Mousavi, B. Mahdavi, and M. Delavari, “Nanostructural Cu-Doped ZnO Hollow Spheres as an Economical and Recyclable Catalyst in the Synthesis of 1H Pyrazolo[1,2-b]Phthalazine-5,10-Diones and Pyrazolo[1,2-a][1,2,4]Triazole-1,3-Diones,”Organic Preparations and Procedures International 52, no. 4 (2020): 328–39.
  • B. Maleki, F. B. Tabrizy, R. Tayebee, and M. Baghayeri, “Oxidative Aromatization of 1,3,5-Trisubstituted 2-Pyrazolines Using Oxalic Acid/Sodium Nitrite System,”Polycyclic Aromatic Compounds 39, no. 2 (2019): 93–8.
  • B. Maleki, H. Natheghi, R. Tayebee, H. Alinezhad, A. Amiri, S. A. Hossieni, and S. M. Mahdi Nouri, “Synthesis and Characterization of Nanorod Magnetic Co–Fe Mixed Oxides and Its Catalytic Behavior towards One-Pot Synthesis of Polysubstituted Pyridine Derivatives,”Polycyclic Aromatic Compounds 40, no. 3 (2020): 633–43.
  • H. Alinezhad, M. Tajbakhsh, B. Maleki, and F. P. Oushibi, “Acidic Ionic Liquid [H-NP]HSO4 Promoted One-Pot Synthesis of Dihydro-1H-Indeno[1,2-b]Pyridines and Polysubstituted Imidazoles,”Polycyclic Aromatic Compounds 40, no. 5 (2020): 1485–500.
  • B. Maleki, O. Reiser, E. Esmaeilnezhad, and H. Jin. Choi, “SO3H-Dendrimer Functionalized Magnetic Nanoparticles (Fe3O4@D-NH-(CH2)4-SO3H): Synthesis, Characterization and Its Application as a Novel and Heterogeneous Catalyst for the One-Pot Synthesis of Polyfunctionalized Pyrans and Polyhydroquinolines,” Polyhedron 162, (2019): 129–41.
  • F. Adibian, A. R. Pourali, B. Maleki, M. Baghayeri, and A. Amiri, “One-Pot Synthesis of Dihydro-1H-Indeno[1,2-b] Pyridines and Tetrahydrobenzo[b] Pyran Derivatives Using a New and Efficient Nanocomposite Catalyst Based on N-Butylsulfonate-Functionalized MMWCNTs-D-NH2,” Polyhedron 175, (2020): 114179.
  • F. Gao, T. Wang, J. Xiao, and G. Huang, “Antibacterial Activity Study of 1,2,4-Triazole Derivatives,” European Journal of Medicinal Chemistry 173, (2019) : 274–81.
  • K. Bozorov, J. Zhao, H. A. Aisa. “1,2,3-Triazole-Containing Hybrids as Leads in Medicinal Chemistry: A Recent Overview,” Bioorganic & Medicinal Chemistry 27, no. 16 (2019) : 3511–31.
  • Z. Xu, S. J. Zhao, Y. Liu. “ 1,2,3-Triazole-containing Hybrids as Potential Anticancer Agents: Current Developments, Action Mechanisms and Structure-Activity Relationships ,” European Journal of Medicinal Chemistry 183, (2019) : 111700.
  • L. S. Feng, Z. Xu, L. Chang, C. Li, X. F. Yan, C. Gao, C. Ding, F. Zhao, F. Shi, and X. Wu, “Hybrid Molecules with Potential in Vitro Antiplasmodial and in Vivo Antimalarial Activity against drug-resistant Plasmodium falciparum ,” Medical Research Review 40, no. 3 (2020): 931–71.
  • C. P. Kaushik, J. Sangwan, R. Luxmi, K. Kumar, and A. Pahwa, “Synthetic Routes for 1,4-Disubstituted 1,2,3-Triazoles: A Review,”Current Organic Chemistry 23, no. 8 (2019): 860–900. no.
  • B. Zhang, “Comprehensive Review on the Anti-bacterial Activity of 1,2,3-triazole Hybrids ,” European Journal of Medicinal Chemistry 168, (2019) : 357–72.
  • (a) S. T. Abu-Orabi, and 1. “3-Dipolar Cycloaddition Reactions of Substituted Benzyl Azides with Acetylenic Compounds,”Molecules 7, no. 2 (2002): 302–14. (b) W. Q. Fan, A. R. Katritzky, C. W. Rees and E. F. V. Scriven, In Comprehensive Heterocyclic Chemistry II, vol. 4. (Oxford: Elsevier Science, 1996): 1–126.
  • R. B. Woodward, and R. Hoffmann, “The Conservation of Orbital Symmetry,”Angewandte Chemie International Edition in English 8, no. 11 (1969): 781–53.
  • (a) R. Huisgen, and 1. “3-Dipolare Cycloaddition,” Angewandte Chemie International Edition 75 , (1963) : 604–37. (b) R. Huisgen, “1,3‐Dipolar Cycloadditions. Past and Future,”Angewandte Chemie International Edition in English 2, no. 10 (1963): 565–98. (c) R. Huisgen, “Kinetics and Mechanism of 1,3‐Dipolar Cycloadditions,”Angewandte Chemie International Edition in English 2, no. 11 (1963): 633–45.
  • R. Huisgen, In 1,3-Dipolar Cycloaddition Chemistry (Ed. A. Padwa), (New York: Wiley), 1 (1984): 1–176.
  • (a) C. W. Tornoe, C. Christensen, and M. Meldal, “Peptidotriazoles on Solid Phase:[1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cyclo Additions of Terminal Alkynes to Azides, Journal of Organic,”Chemistry 67, no. 2002 (2002): 3057–64. (b) V. V. Rostovtsev, L. G. Green, V. V. Fokin, and K. B. Sharpless, “A Stepwise Huisgen Cycloaddition Process: Copper (I)‐Catalyzed Regio Selective “Ligation” of Azides and Terminal Alkynes,” Angewandte Chemie International Edition 41, (2002) : 2596–9.
  • H. C. Kolb, M. G. Finn, and K. B. Sharpless, “Click Chemistry: Diverse Chemical Function from a Few Good Reactions,”Angewandte Chemie International Edition 40, no. 11 (2001): 2004–21.
  • B. List, C. F. Barbas, and R. A. Lerner, “Aldol Sensors for the Rapid Generation of Tunable Fluorescence by Antibody Catalysis,”Proceedings of the National Academy of Sciences of the United States of America 95, no. 26 (1998): 15351–5.
  • (a) J. P. Goddard, and J. L. Reymond, “Recent Advances in Enzyme Assays,”Trends in Biotechnology 22, no. 7 (2004): 363–70. (b) R. P. Carlson, N. Jourdain, “Fluorogenic Polypropionate Fragments for Detecting Stereoselective Aldolases,”Chemistry of Europian Journal 6, (2000): 4154–62. (c) M. K. Froemming, and D. Sames, “Fluoromorphic Substrates for Fatty Acid Metabolism: Highly Sensitive Probes for Mammalian Medium-chain acyl-CoA Dehydrogenase,”Angewandte Chemie (International ed. in English) 45, no. 4 (2006): 637–42. (d) M. K. Froemming, “Harnessing Functional Plasticity of Enzymes: A Fluorogenic Probe for Imaging 17β-HSD10 Dehydrogenase, an Enzyme Involved in Alzheimer's and Parkinson's Diseases,”Journal of the American Chemical Society 129no. 46 (2007): 14518–22. (e) B. Xing, A. Khanamiryan, and J. Rao, “Cell-Permeable near-Infrared Fluorogenic Substrates for Imaging β-Lactamase Activity,”Journal of the American Chemical Society 127, no. 12 (2005): 4158–9. (f) H. M. Guo, M. Minakawa, and F. Tanaka, “Fluorogenic Imines for Fluorescent Detection of Mannich-Type Reactions of Phenols in Water,”The Journal of Organic Chemistry 73, no. 10 (2008): 3964–6. (g) F. Tanaka, “Development of Protein, Peptide, and Small Molecule Catalysts Using Catalysis-Based Selection Strategies,”Chemical Record (New York, N.Y.) 5, no. 5 (2005): 276–85. (h) J. Gildersleeve, A. Varvak, S. Atwell, D. Evans, and P. G. Schultz, “Development of a High‐Throughput Screen for Protein Catalysts: Application to the Directed Evolution of Antibody Aldolases,”Angewandte Chemie (International ed. in English) 42, no. 48 (2003): 5971–3.
  • (a) F. Tanaka, R. Thayumanavan, N. Mase, and C. F. Barbas, “Rapid Analysis of Solvent Effects on Enamine Formation by Fluorescence: how Might Enzymes Facilitate Enamine Chemistry with Primary Amines,”Tetrahedron Letters 45, no. 2 (2004): 325–8. (b) N. Mase, F. Tanaka, “Rapid Fluorescent Screening for Bifunctional Amine-Acid Catalysts: Efficient Syntheses of Quaternary Carbon-Containing Aldols under Organocatalysis,”Organic Letters 5, no. 23 (2003): 4369–72. (c) N. Mase, F. Tanaka, “Synthesis of Beta-hydroxyaldehydes with Stereogenic Quaternary Carbon Centers by Direct Organocatalytic Asymmetric Aldol Reactions ,”Angewandte Chemie (International ed. in English) 43, no. 18 (2004): 2420–3.
  • D. J. Yee, V. Balsanek, and D. Sames, “New Tools for Molecular Imaging of Redox Metabolism: Development of a Fluorogenic Probe for 3 Alpha-Hydroxysteroid Dehydrogenases,”Journal of the American Chemical Society 126, no. 8 (2004): 2282–3.
  • K. E. Beatty, F. Xie, Q. Wang, and D. A. Tirrell, “Selective Dye-labeling of Newly Synthesized Proteins in Bacterial Cells ,”Journal of the American Chemical Society 127, no. 41 (2005): 14150–1.
  • (a) J. F. Lutz, and Z. Zarafshani, “Efficient Construction of Therapeutics, Bioconjugates, Biomaterials and Bioactive Surfaces Using Azide-Alkyne "Click" Chemistry,”Advanced Drug Delivery Reviews 60, no. 9 (2008): 958–70. (b) K. Sivakumar, F. Xie, B. M. Cash, S. Long, H. N. Barnhill, and Q. Wang, “A Fluorogenic 1,3-Dipolar Cycloaddition Reaction of 3-Azidocoumarins and Acetylenes,”Organic Letters 6, no. 24 (2004): 4603–6. (c) J. F. Lutz, “1,3-dipolar Cycloadditions of Azides and Alkynes: A Universal Ligation Tool in Polymer and Materials Science,”Angewandte Chemie (International ed. in English) 46, no. 7 (2007): 1018–25. (d) H. Nandivada, X. W. Jiang, and J. Lahann, “Click Chemistry: Versatility and Control in the Hands of Materials Scientists,” Advanced Materials 19, (2007) : 2197–08.
  • Z. Zhou, and C. J. Fahrni, “A Fluorogenic Probe for the copper(I)-catalyzed Azide-alkyne Ligation Reaction: Modulation of the Fluorescence Emission via 3(n,pi)-1(pi,pi) Inversion,”Journal of the American Chemical Society 126, no. 29 (2004): 8862–3.
  • F. Xie, K. Sivakumar, Q. B. Zeng, M. A. Bruckman, B. Hodges, and Q. Wang, “A Fluorogenic Click Reaction of Azidoanthracene Derivatives,”Tetrahedron 64, no. 13 (2008): 2906–14.
  • M. Sawa, T. L. Hsu, T. Itoh, M. Sugiyama, S. R. Hanson, P. K. Vogt, and C. H. Wong, “Glycoproteomic Probes for Fluorescent Imaging of Fucosylated Glycans in Vivo,”Proceedings of the National Academy of Sciences of the United States of America 103, no. 33 (2006): 12371–6.
  • (a) M. L. Tiku, J. B. Liesch, and F. M. Robertson, “Production of Hydrogen Peroxide by Rabbit Articular Chondrocytes. Enhancement by Cytokines,” Journal of Immunology 145, (1990) : 690–6. (b) B. E. Bax, A. S. Alam, B. Banerji, C. M. Bax, P. J. Bevis, C. R. Stevens, B. S. Moonga, D. R. Blake, and M. Zaidi, “Stimulation of Osteoclastic Bone Resorption by Hydrogen Peroxide,”Biochemical and Biophysical Research Communications 183, no. 3 (1992): 1153–8.
  • (a) J. E. Kinsella, E. Frankel, B. German, J. Kanner, “Possible Mechanisms for the Protective Role of Antioxidants in Wine and Plant Foods,” Food Technology, 47 (1993) : 85–9. (b) N. Singh, and P. S. Rajini, “Free Radical Scavenging Activity of an Aqueous Extract of Potato Peel,” Food Chemistry 85, no. 4 (2004): 611–6. (c) R. L. Prior, X. Wu, and K, Schaich, “Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements,”Journal of Agricultural and Food Chemistry 53, no. 10 (2005): 4290–02.
  • S. Trakossas, E. Coutouli-Argyropoulou, and D. J. Hadjipavlou-Litina, “Synthesis of Modified Triazole Nucleosides Possessing One or Two Base Moieties via a Click Chemistry Approach,”Tetrahedron Letters 52, no. 14 (2011): 1673–6.
  • (a) C. Y. Lin, A. C. Ho, H. C. Chiang, J. S. Sun, S. Y. “ Sheu, Reactive Oxygen Scavenger Effect of Pyrimidines, Benzotriazoles and Related Compounds,” Anticancer Research, and 22. (2002) : 937–42. (b) O. Bekircan, T. Ozen, N. Gumrukcuoglu, and H. Bektas, “Synthesis and Antioxidant Properties of Some New 3-(4-Chlorophenyl)-5-(Pyridin-4-yl)-4H-1,2,4-Triazole Derivatives,”Zeitschrift Fur Naturforschung 63b, (2008) : 548–54. (c) G. Aktay, B. Tozkoparan, and M. Ertan, “Investigation of Antioxidant Properties of Some 6-(alpha-aminobenzyl)thiazolo[3,2-b]-1,2,4-triazole-5-ol Compounds,”Journal of Enzyme Inhibition and Medicinal Chemistry 24, no. 3 (2009): 898–02.
  • C. Juan-Carlos, B. Nestor-Fabian, T. Lenka-Victoria, M. Paula-Daniela, J. Hurtado, M. Macias, and J. Portilla, “Water-Compatible Synthesis of 1,2,3-Triazoles under Ultrasonic Conditions by a Cu(I) Complex-Mediated Click Reaction,”ACS Omega 5, no. 46 (2020): 30148–59.
  • C. W. Choi, S. C. Kim, S. S. Hwang, B. K. Choi, H. J. Ahn, M. Y. Lee, S. H. Park, and S. K. Kim, “Antioxidant Activity and Free Radical Scavenging Capacity between Korean Medicinal Plants and Flavonoids by Assay-Guided Comparison,”Plant Science 163, no. 6 (2002): 1161–8.
  • L. Marcocci, J. J. Maguire, M. T. Droy-Lefaix, and L. Packer, “The Nitric Oxide-Scavenging Properties of Ginkgo Biloba Extract EGb 761,”Biochemical and Biophysical Research Communications 201, no. 2 (1994): 748–55.
  • (a) H. Y. Wang, Y. Qin, H. Li, L. J. Roman, P. Martasek, T. L. Poulos, and R. B. Silverman, “Potent and Selective Human Neuronal Nitric Oxide Synthase Inhibition by Optimization of the 2-Aminopyridine-Based Scaffold with a Pyridine Linker,”Journal of Medicinal Chemistry 59, no. 10 (2016): 4913–25. (b) J. P. Declercq, C. Evrard, A. Clippe, D. V. Stricht, A. Bernard, and B. K. Declercq, “Crystal Structure of Human Peroxiredoxin 5, A Novel Type of Mammalian Peroxiredoxin at 1.5 Å Resolution,”Journal of Molecular Biology 311 (2001): 751–59.
  • J. M. Wang, C. Jun, K. Chai, K. Kwak, and Z. S. Quan, “Synthesis and Anticonvulsant Activity of 1-Substituted benzyl-N-Substituted-1,2,3-Triazole-4-Formamides,” Progress in Natural Science 16, (2006) : 925–9.
  • (a) B. Vishnu Nayak, S. Ciftci-Yabanoglu, S. S. Jadav, M. Jagrat, B. N. Sinha, G. Ucar, and V. Jayaprakash, “Monoamine Oxidase Inhibitory Activity of 3, 5-Biaryl-4, 5-Dihydro-1H-Pyrazole-1-Carboxylate Derivatives, Europian,”Journal of Medicinal Chemistry 69 (2013) : 762–7. (b) B. Vishnu Nayak, I. Baysal, G. Ucar, B. N. Sinha, “Monoamine Oxidase Inhibitory Activity of Novel Pyrazoline Analogues: curcumin Based Design and Synthesis,” ACS Medicinal Chemistry Letters 7, (2015): 56–61. (c) B. Vishnu Nayak, S. Ciftci-Yabanoglu, S. Bhakat, T. Ajay Kumar, B. N. Sinha, G. Ucar, M. E. S. Soliman, and V. Jayaprakash, “ Monoamine Oxidase Inhibitory Activity of 2-Aryl-4H-Chromen-4-Ones,” Bioorganic Chemistry 58, (2005) : 72–80.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.