164
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Anticancer and DNA Interaction of New Zinc(II), Palladium(II), Platinum(II) and Silver(I) Complexes Based on Indol-3-Acetic Acid; Solid and Solution Studies

, , &
Pages 4413-4447 | Received 24 Nov 2020, Accepted 11 Feb 2021, Published online: 11 Mar 2021

References

  • Kenneth Thimann, “Auxin Activity of Some Indole Derivatives,” Plant Physiology 33, no. 5 (1958): 311–21.
  • Thomas Gaspar, Claire Claire, Claude Penel, Hubert Greppin, David Reid, and Trevor Thorpe, “Plant Hormones and Plant Growth Regulators in Plant Tissue Culture,” In Vitro Cellular & Developmental Biology - Plant 32, no. 4 (1996): 272–89.
  • Cheryl L. Patten, and Bernard R. Glick, “Bacterial Biosynthesis of Indole-3-Acetic Acid,” Canadian Journal of Microbiology 42, no. 3 (1996): 207–20.
  • Z. Přikryl, V. Vančura, and M. Wurst, “Auxin Formation by Rhizosphere Bacteria as a Factor of Root Growth,” Biologia Plantarum 27, no. 2–3 (1985): 159–63.
  • B. Lippmann, V. Leinhos, and H. Bergmann, “Influence of Auxin Producing Rhizobacteria on Root Morphology and Nutrient Accumulation of Crops I. Change in Root Morphology and Nutrient Accumulation in Maize (Zea mays L.) Caused by Inoculation with Indole 3-Acetic Acid (IAA) Producing Pseudomonas and Azotobacter Strains or IAA Applied Exogenously,” Angewandte Botanik = Journal of Applied Botany 69 (1995): 31–6.
  • V. Leinhos, and H. Bergmann, “Influence of Auxin Producing Rhizobacteria on Root Morphology and Nutrient Accumulation of Crops, Part 2: Root Growth Promotion and Nutrient Accumulation of Maize (Zea mays L.) by Inoculation with Indole-3-Acetic Acid (IAA) Producing Pseudomonas Strains and by Exogenously Applied IAA under Different Water Supply Conditions,” Angewandte Botanik = Journal of Applied Botany 69 (1995): 37–41.
  • Muhammad Sarwar, and Robert J. Kremer, “Enhanced Suppression of Plant Growth through Production of L-Tryptophan-Derived Compounds by Deleterious Rhizobacteria,” Plant and Soil 172, no. 2 (1995): 261–9.
  • A. Vande Broek, M. Lambrecht, K. Eggermont, and J. Vanderleyden, “Auxins Upregulate Expression of the Indole-3-Pyruvate Decarboxylase Gene in Azospirillum brasilense,” Journal of Bacteriology 181, no. 4 (1999): 1338–42.
  • V. V. Polevoi, Fitogormony (Phytohormones, in Russian) (Leningrad: Leningrad University Press, 1982), 89–91.
  • Irini G. Gazaryan, and Mark Lagrimini, “Tobacco Anionic Peroxidase Overexpressed in Transgenic Plants: Aerobic Oxidation of Indole-3-Acetic Acid,” Phytochemistry 42, no. 5 (1996): 1271–8. doi:10.1016/0031-9422(96)00096-9.
  • Irini G. Gazaryan, Mark Lagrimini, G. A. Ashby, and R. N. F. Thorneley, “Mechanism of Indole-3-Acetic Acid Oxidation by Plant Peroxidases:Anaerobic Stopped–Flow Spectrophotometric Studies on Horseradish and Tobacco Peroxidases,” Biochemical Journal 313, no. 3 (1996): 841–7.
  • A. Sigel and H. Sigel, Metal Ions in Biological Systems. Iron Transport and Storage in Microorganisms (Dekker, New York: Plantsand Animals, 1998): 35.
  • J. Ouyang, X. Shao, and J. Li, “Indole-3-Glycerol Phosphate, a Branchpoint of Indole-3-Acetic Acid Biosynthesis from the Tryptophan Biosynthetic Pathway in Arabidopsis Thaliana,” The Plant Journal: For Cell and Molecular Biology 24, no. 3 (2000): 327–33.
  • O. Hutzinger, and T. Kosuge, “Microbial Synthesis and Degradation of Indole-3-Acetic Acid. 3. The Isolation and Characterization of Indole-3-Acetyl-Epsilon-L-lysine,” Biochemistry 7, no. 2 (1968): 601–5.
  • E. Abele, R. Abele, O. Dzenitis, and E. Lukevics, “Indole and Isatin Oximes: Synthesis, Reactions, and Biological Activity,” Chemistry of Heterocyclic Compounds 39, no. 1 (2003): 3–35.
  • Bor-Cherng Hong, Yea-Fen Jiang, Yi-Ling Chang, and Shiow-Ju Lee, “Synthesis and Cytotoxicity Studies of Cyclohepta[b]Indoles,Benzo[6,7]Cyclohepta[1,2-b]Indoles, Indeno[1,2-b]Indoles, and Benzo[a]Carbazoles,” Journal of the Chinese Chemical Society 53, no. 3 (2006): 647–62.
  • Luis Chacon Garcia, and Roberto Martinez, “Synthesis and in Vitro Cytotoxic Activity of Pyrrolo[2,3-e]Indole Derivatives and a Dihydro Benzoindole Analogue,” European Journal of Medicinal Chemistry 37 (2002): 261–6.
  • Sharon Rossiter, Lisa K. Folkes, and Peter Wardman, “Halogenated Indole-3-Acetic Acids as Oxidatively Activated Prodrugs with Potential for Targeted Cancer Therapy,” Bioorganic and Medicinal Chemistry Letters 12, no. 18 (2002): 2523–6.
  • Maria-João R. P. Queiroz, Ana S. Abreu, M. Solange D. Carvalho, Paula M. T. Ferreira, Nair Nazareth, and M. São-José Nascimento, “Synthesis of New Heteroaryl and Heteroannulated Indoles from Dehydrophenylalanines: Antitumor Evaluation,” Bioorganic & Medicinal Chemistry 16, no. 10 (2008): 5584–9.
  • Su Yeon Kim, Jung Su Ryu, Hailan Li, Woo-Jae Park, Hye-Young Yun, Kwang Jin Baek, Nyoun Soo Kwon, Uy Dong Sohn, and Dong-Seok Kim, “UVB-Activated Indole-3-Acetic Acid Induces Apoptosis of PC-3 Prostate Cancer Cells,” Anticancer Research 30 (2010): 4607–4612. PMID: 21115913.
  • Lisak K. Folkes, Luis P. Candeias, and Peter. Wardman, “Toward Targeted “Oxidation Therapy” of Cancer: peroxidase-Catalysed Cytotoxicity of Indole-3-Acedic Acids,” International Journal of Radiation Oncology, Biology, Physics 42, no. 4 (1998): 917–20.
  • Chen Huang, Li-Ying Liu, Tu-Sheng Song, Lei Ni, Ling Yang, Xiao-Yan Hu, Jing-Song Hu, Li-Ping Song, Yu Luo, and Lu-Sheng Si, “Apoptosis of Pancreatic Cancer BXPC-3 Cells Induced by Indole-3-Acetic Acid in Combination with Horseradish Peroxidase,” World Journal of Gastroenterology 11, no. 29 (2005): 4519–23.
  • Lisa K. Folkes, and Peter Wardman, “Enhancing the Efficacy of Photodynamic Cancer Therapy by Radicals from Plant Auxin (Indole-3-Acetic Acid),” Cancer Research 63, no. 4 (2003): 776–9. PMID: 12591725.
  • Xuling Xue, Yanyan Zhu, Bo Xiao, Lu Liu, and Hong Xu, “Two Zinc (II) Complexes Based on Indole-3-Acetic Acid: Crystal Structures, Fluorescence Sensors, and Ion Exchange with Mercury(II),” Journal of Coordination Chemistry 64, no. 16 (2011): 2923–35.
  • Xiangyu Zhang, Xuling Xue, Shuzi Liu, Min Yu, Hong Xu, and Shuangquan Zan, “Metal Complexes of Indole-3-Acetic Acid: Synthesis, Crystal Structures, and Pb(II) Chemosensing by Cation-Exchange Reaction,” Journal of Coordination Chemistry 67, no. 19 (2014): 3188–201.
  • A. A. Kamnev, A. G. Shchelochkov, P. A. Tarantilis, M. G. Polissiou, and Yurii D. Perfiliev, “Complexation of Indole-3-Acetic Acid with Iron(III): Influence of Coordination on the p-Electronic System of the Ligand,” Monatshefte fuer Chemie/Chemical Monthly 132, no. 6 (2001): 675–81.
  • A. A. Kamnev, A. G. Shchelochkov, Yu D. Perfiliev, P. A. Tarantilis, and M. G. Polissiou, “Spectroscopic Investigation of Indole-3-Acetic Acid Interaction with Iron(III),” Journal of Molecular Structure 563–564 (2001): 565–72. doi:10.1016/S0022-2860(00)00911-X.
  • G. K. Sandhu, and N. Sharma, “Diorganotin(1V) Complexes of Indole 3-Acetic Acid,” Applied Organometallic Chemistry 7, no. 1 (1993): 39–43. doi:10.1002/aoc.590070104.
  • Ganesh N. Naik, Aishakhanam H. Pathan, Raghavendra P. Bakale, G. Shashikala, K. Ligade, and Kalagouda Gudasi, “Rare Earth Complexes of Indole-3-Acetic Acid Derived Schiff Base: Synthesis, Characterization and Plant Growth Activity,” Chemistry Journal 3 (2013): 149–57.
  • William P. Griffith, and Sahar I. Mostafa, “Complexes of Esculetin with Second and Third Row Elements,” Polyhedron 11, no. 8 (1992): 871–7. doi:10.1016/S0277-5387(00)83334-3
  • Aino-Liisa Alanne, “Novel Applications Related to Bisphosphorus Compounds”, (University of Eastern Finland Dissertations in Health Sciences, 2014), 32.
  • G. H. Jeffry, J. Bassett, J. Medham, and R. C. Denney, Vogel's Textbook of Quantitative Chemical Analysis, 5th ed. (1989): 463.
  • P. K. Sharma, and S. N. Dubey, “Synthesis and Structural Studies of Iron(II) Complexes with N-Salicylidene- and N-(2-Hydroxy-l-Naphthylidene)Amino Acids,” Indian Journal of Chemistry 33A (1994): 1113–5.
  • Miroslava Vujcic, Srdjan Tufegdzic, Zoran Vujcic, Miroslav Gasic, and Dusan Sladic, “Interactions of the anti-Tumor Sesquiterpene Hydroquinone Avarol with DNA in Vitro,” Journal of the Serbian Chemical Society 72, no. 12 (2007): 1265–9.
  • Murmur Julius, “A Procedure for the Isolation of Deoxyribonucleic Acid from Micro-Organisms,” Journal of Molecular Biology 3 (1961): 208–18.
  • Natarajan Raman, Krishnan Pothiraj, and Thanasekaran Baskaran, “DNA Interaction, Antimicrobial, Electrochemical and Spectroscopic Studies of Metal(II) Complexes with Tridentate Heterocyclic Schiff Base Derived from 2′-Methylacetoacetanilide,” Journal of Molecular Structure 1000, no. 1–3 (2011): 135–44.
  • W. Geary, “The Use of Conductivity Measurements in Organic Solvents,” Coordination Chemistry Reviews 7, no. 1 (1971): 81–122. doi:10.1016/S0010-8545(00)80009-0.
  • Ercules E. S. Teotonio, José G. P. Espı́nola, Hermi F. Brito, Oscar L. Malta, Severino F. Oliveira, Dalva L. A. de Faria, and Celly M. S. Izumi, “Influence of the N-[Methylpyridyl]Acetamide Ligands on the Photoluminescent Properties of Eu(III)-Perchlorate Complexes,” Polyhedron 21, no. 18 (2002): 1837–44.
  • Shadia Elsayed, Ahmed M. El-Hendawy, Ian S. Butler, and Sahar I. Mostafa, “New Complexes of 2- Hydroxy-1-Naphthoic Acid and X-Ray Crystal Structure of [Pt(Hna)(PPh3)2],” Journal of Molecular Structure 1036 (2013): 196–202.
  • Afaf A. Alie El-Deen, Abd El-Monem, E. El-Askalany, Ruba Halaoui, Bertrand J. Jean-Claude, Ian S. Butler, and Sahar I. Mostafa, “New Zinc(II), Palladium(II) and Platinum(II) Complexes of DL-Piperidine-2-Carboxylic Acid; X-Ray Crystal Structure of Trans-[Zn2(l-Ca)2(Hpa)2Cl6] and Anticancer Activity of Some Complexes,” Journal of Molecular Structure 1036 (2013): 161–7.
  • S. I. Mostafa, and M. M. Bekheit, “Synthesis and Structure Studies of Complexes of Some Second Row Transition Metals with 1-(Phenylacetyl and Phenoxyacetyl)-4-Phenyl-3-Thiosemicarbazide,” Chemical & Pharmaceutical Bulletin 48, no. 2 (2000): 266–71.
  • Sahar I. Mostafa, “Mixed Ligand Complexes with 2-Piperidine-Carboxylic Acid as Primary Ligand and Ethylene Diamine, 2,2’-Bipyridyl, 1,10-Phenanthroline and 2(2’-Pyridyl)Quinoxaline as Secondary Ligands: preparation, Characterization and Biological Activity,” Transition Metal Chemistry 32, no. 6 (2007): 769–75.
  • Mehmet Suat Aksoy, Rahmiye Aydin, Naciye Türkel, and Ulviye Özer, “Formation Constants of Chromium(III), Scandium(III) and Yttrium(III) Complexes of Some Hydroxy Naphthoic Acids,” Chemical & Pharmaceutical Bulletin 53, no. 5 (2005): 471–5.
  • J. N. Van Niekerk, F. R. L. Schoening, and J. H. Talbot, “The Crystal Structure of Zinc Acetate Dihydrate, Zn(CH3COO)2,” Acta Crystallographica 6, no. 8 (1953): 720–3.
  • E. F. Bertaut, D. Tran Qui, P. Burlet, P. Burlet, M. Thomas, and J. M. Moreau, “Crystal Structure of Manganese Acetate Tetrahydrate,” Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry 30, no. 9 (1974): 2234–6. doi:10.1107/s0567740874006807.
  • Elmer C. Alyea, Sheton A. Dias, George. Ferguson, Masood A. Khan, and Paul J. Roberts, “Structural Studies of Steric Effects in Phosphine Complexes. 5. Synthesis and Crystal and Molecular Structures of the Dimers Bis(Acetato)(Tricyclohexylphosphine) Mercury(II) and Bis(Acetato)(Tri-o-Tolylphosphine)Mercury (II),” Inorganic Chemistry 18, no. 9 (1979): 2433–7.
  • Fatema A. El-Morsy, Bertrand J. Jean-Claude, Ian S. Butler, Shadia A. El-Sayed, and Sahar I. Mostafa, “Synthesis, Characterization and Anticancer Activity of New Zinc(II), Molybdate(II), Palladium(II), Silver(I), Rhodium(III), Ruthenium(II) and Platinum(II) Complexes of 5,6-Diamino-4-Hydroxy-2-Mercaptopyrimidine,” Inorganica Chimica Acta 423 (2014): 144–55.
  • Sahar I. Mostafa, Constantina Papatriantafyllopoulou, Spyros P. Perlepes, and Nick Hadjiliadis, “The First Metal Complexes of 4,6-Diamino-1-Hydro-5-Hydroxy-Pyrimidine-2-Thione:Preparation, Physical and Spectroscopic Studies, and Preliminary Antimicrobial Properties,” Bioinorganic Chemistry and Applications 2008 (2008): 1–8.
  • Aaron Nieto-Alvarez Aaron, Zamudio-Rivera Luis, Hernández-Altamirano Raúl, Mena-Cervantes Violeta, Barba Victor, and Flores-Sandova César, “Synthesis and Characterization of Three New di-n-Butyl [Bis (Alkyl-Aminopropionic Acid)]Tin (IV),” Journal of the Mexican Chemical Society 60, no. 4 (2017): 194–9.
  • Athanassios K. Boudalis, Vassilios Nastopoulos, Spyros P. Perlepes, Catherine P. Raptopoulou, and Aris Terzis, “Reactions of 2,2′-Bipyridine (Bpy) and 1,10-Phenanthroline (Phen) with Yttrium(III) Nitrate: Preparation, X-Ray Crystal Structures and Spectroscopic Characterization of the Bis-Bpy and Bis-Phen Complexes,” Transition Metal Chemistry 26, no. 3 (2001): 276–81.
  • Shadia Elsayed, Eman Saad, Ian Butler, and Sahar Mostafa, “2-Hydroxynaphthaldehyde Chitosan Schiff-Base; New Complexes, Biosorbent to Remove Cadmium(II) Ions from Aqueous Media and Aquatic Ecotoxicity against Green Alga Pseudokirchneriella subcapitata,” Journal of Environmental Chemical Engineering 6, no. 2 (2018): 3451–68.
  • Shadia A. Elsayed, Bertrand J. Jean-Claude, Ian S. Butler, and Sahar I. Mostafa, “Synthesis, Structural Characterization and Anticancer Activity of Some New Complexes of 6-Amino-4-Hydroxy-2-Thiopyrimidine,” Journal of Molecular Structure 1028 (2012): 208–14.
  • Kazuo Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th ed. (New York: Wiley, 1986), 484. doi:10.1002/0470027320.s4104
  • Aya A. Fathy, Ian S. Butler, Mohamed Abd. Elrahman, Bertrand J. Jean-Claude, and Sahar I. Mostafa, “Anticancer Evaluation and Drug Delivery of New Palladium(II) Complexes Based on the Chelate of Alendronate onto Hydroxyapatite Nanoparticles,” Inorganica Chimica Acta 473 (2018): 44–50.
  • Issam M. Gabr, Hala A. El-Asmy, Mohamed S. Emmam, and Sahar I. Mostafa, “Synthesis, Characterization and Anticancer Activity of 3-Aminopyrazine-2-Carboxylic Acid Transition Metal Complexes,” Transition Metal Chemistry 34, no. 4 (2009): 409–18. doi:10.1007/s11243-009-9210-3.
  • Sahar Mostafa, “Complexes of 2,5-Dihydroxy-1,4-Benzoquinone and Chloranilic Acid with Second and Third Row Transition Elements,” Transition Metal Chemistry 24, no. 3 (1999): 306–10.
  • Shadia A. Elsayed, Ahmed M. El-Hendawy, Sahar I. Mostafa, Bertrand J. Jean-Claude, Margaretta Todorova, and Ian S. Butler, “Antineoplastic Activity of New Transition Metal Complexes of 6-Methylpyridine-2-carbaldehyde-N(4)-Ethylthiosemicarbazone: X-Ray Crystal Structures of [VO2(mpETSC)] and [Pt(mpETSC)Cl],” Bioinorganic Chemistry and Applications 2010 (2010): 1–11. ID 149149;
  • Sahar I. Mostafa, “Synthesis, Characterization and Antineoplastic Activity of 5-Chloro-2,3-Dihydroxypyridine Transition Metal Complexes,” Journal of Coordination Chemistry 61, no. 10 (2008): 1553–67. doi:10.1080/00958970701598977.
  • Neven A. Annan, Ian S. Butler, Hattem M. Titi, Yahya El-Lazeik, Bertrand. Jean-Claude, and Sahar I. Mostafa, “DNA Interaction and Anticancer Evaluation of New Zinc(II), Ruthenium(II), Rhodium(III), Palladium(II), Silver(I) and Platinum(II) Complexes Based on Kojic Acid; X-Ray Crystal Structure of [Ag(ka)(PPh3)].H2O,” Inorganica Chimica Acta 487 (2019): 433–47.
  • M. Muthu Tamizh, Kurt Mereiter, Karl Kirchner, B. Ramachandra Bhat, and R. Karvembu, “Crystal Structures and Spectral Studies of Square Planar Nickel(II) Complexes Containing an ONS Donor Schiff Base and Triphenylphosphine,” Polyhedron 28, no. 11 (2009): 2157–64.
  • Hala A. El-Asmy, Ian S. Butler, Zhor S. Mouhri, Bertrand J. Jean-Claude, Mohamed Emmam, and Sahar I. Mostafa, “ Synthesis, Characterization and DNA Interaction Studies of New Complexes Containing 2-Mercaptobenzothiazole and Different Dinitrogen or Phosphorous Aromatic Donors,” Inorganica Chimica Acta 441 (2016) : 20–33.
  • Ahmed A. Shabana, Ian S. Butler, Denis, F. R. Gilson, Bertrand J. Jean-Claude, Zhor S. Mouhri, Mohsen M. Mostafa, and Sahar I. Mostafa, “Synthesis, Characterization, Anticancer Activity and DNA Interaction Studies of New 2-Aminobenzothiazole Complexes; Crystal Structure and DFT Calculations of [Ag(Habt)2]ClO4,” Inorganica Chimica Acta 423 (2014): 242–55.
  • Cathrin Zeppek, Johann Pichler, Ana Torvisco, Michaela Flock, and Frank Uhlig, “Aryltin Chlorides and Hydrides: Preparation, Detailed NMR Studies and DFT Calculations,” Journal of Organometallic Chemistry 740 (2013): 41–9.
  • Asha Jain, Sanjiv Saxena, Audhesh K. Rai, and Prabhu N. Saxena, “Assessment of Toxicity of Some Penta- and Hexacoordinated Organotin(IV) and Tetracoordinated Tin(II) Complexes of Heterocyclic β-Diketones,” Bioinorganic Chemistry and Applications (2006): 1–4. doi:10.1155/BCA/2006/60140
  • Sahar I. Mostafa, Ahmed A. El-Asmy, and Mohamed S. El-Shahawi, “Ruthenium(II) 2-Hydroxybenzophenone N(4)-Substituted Thiosemicarbazone Complexes,” Transition Metal Chemistry 25, no. 4 (2000): 470–3.
  • William P. Griffith, and Sahar I. Mostafa, “Complexes of 3-Hydroxypyridin-2-One and 1,2-Dimethyl-3-Hydroxypyridin-4-One with Second and Third Row Elements of Groups 6,7 and 8,” Polyhedron 11, no. 23 (1992): 2997–3005. doi:10.1016/S0277-5387(00)80167-9.
  • Hala A. El-Asmy, Ian S. Butler, Zhor S. Mouhri, Bertrand J. Jean-Claude, Mohamed S. Emmam, and Sahar I. Mostafa, “Zinc(II), Ruthenium(II), Rhodium(III), Palladium(II), Silver(I), Platinum(II) and MoO22+‏ Complexes of 2-(2,-Hydroxy-5,-Methylphenyl)-Benzotriazole as Simple or Primary Ligand and 2,2,-Bipyridyl, 9,10-Phenanthroline or Triphenylphosphine as Secondary Ligands: Structure and Anticancer Activity,” Journal of Molecular Structure 1059 (2014): 193–201.
  • Shadia A. Elsayed, Ian S. Butler, Bertrand Jean Claude, and Sahar I. Mostafa, “Synthesis, Characterization and Anticancer Activity of 3-Formylchromone Benzoylhydrazone Metal Complexes,” Transition Metal Chemistry 40, no. 2 (2015): 179–87.
  • Ahmed A. Shabana, Ian S. Butler, Anne Castonguay, Mohsen Mostafa, Bertrand J. Jean-Claude, and Sahar I. Mostafa, “DNA Interaction and Anticancer Evaluation of New Palladium(II), Platinum(II) and Silver(I) complexes Based on (Δ)- and (Λ)-1,2–Bis-(1H-Benzimidazol-2-yl)-1,2-Ethanediol Enantiomers,” Polyhedron 154 (2018): 156–72.
  • Mustafa Kelen, and Nurullah Sanli, “Determination of pKa Values of Some Auxins in Methanol-Water Mixtures by Reversed Phase Liquid Chromatography and Potentiometric Methods,” Journal of the Brazilian Chemical Society 20, no. 1 (2009): 133–40. doi:10.1590/S0103-50532009000100021.
  • Ahmed A. El-Asmy, Ahmed Shabana, Weam Abo El-Maaty, and Mohsen M. Mostafa, “Synthesis, Spectroscopic Characterization, Molecular Modeling and Eukaryotic DNA Degradation of New Hydrazone Complexes,” Arabian Journal of Chemistry 10 (2017): S936–S945.
  • R. Andonouski, L. Spirevska, and A. Nikolovski, “UV Study of the Protonation of Indole and 3-Substituted Indoles in Perchloric Acid Media,” Croatica Chemica Acta 69 (1996): 1201–13.
  • T. E. Furia, CRC Handbook of Food Additives, Ch. 6 Stability Constants (log K1) of Various Metal Chelates, 2nd ed. (Webmaster - George Eby, 1972).
  • Tim Storr, Katherine H. Thompson, and Chris Orvig, “Design of Targeting Ligands in Medicinal Inorganic Chemistry,” Chemical Society Reviews 35, no. 6 (2006): 534–44.
  • Faiza Anam, Asghar Abbas, Kong Mun Lo, Zia-ur-Rehman Zia-Ur-Rehman, Shahid Hameed, and Muhammad Moazzam Naseer, “Homologous 1,3,5- Triarylpyrazolines: Synthesis, CH–- π Interactions Guided Self-Assembly and Effect of Alkyloxy Chain Length on DNA Binding Properties,” New Journal of Chemistry 38, no. 11 (2014): 5617–25.
  • Geneviève Pratviel, Jean Bernadou, and Bernard Meunier, “DNA and RNA Cleavage by Metal Complexes,” Advances in Inorganic Chemistry 45 (1998): 251–312.
  • R. F. Pasternack, E. J. Gibbs, and J. J. Villafranca, “Interactions of Porphyrins with Nucleic Acids,” Biochemistry 22, no. 10 (1983): 2406–14.
  • Geneviève Pratviel, Jean Bernadou, and Bernard Meunier, “DNA and RNA Cleavage,” Advances in Inorganic Chemistry 45 (1998): 251–312.
  • B. D. Wang, Z. Y. Yang, P. Crewdson, and D. Q. Wang, “Synthesis, Crystal Structure and DNA-Binding Studies of the Ln(III) Complex with 6-Hydroxychromone-3-Carbaldehyde Benzoyl Hydrazone,” Journal of Inorganic Biochemistry 101, no. 10 (2007): 1492–504. PMID: 17692381.
  • Farukh Arjmand, and Mubashira Aziz, “Synthesis and Characterization of Dinuclear Macrocyclic Cobalt(II), Copper(II) and Zinc(II) Complexes Derived from 2,2,2('),2(')-S,S[Bis(bis-N,N-2-Thiobenzimidazolyloxalato-1,2-Ethane)]: DNA Binding and Cleavage Studies,” European Journal of Medicinal Chemistry 44, no. 2 (2009): 834–44.
  • Philip J. Cox, George. Psomas, and Christos A. Bolos, “Characterization and DNA-Interaction Studies of 1,1-Dicyano-2,2-Ethylene Dithiolate Ni(II) Mixed-Ligand Complexes with 2-Amino-5-Methyl Thiazole, 2-Amino-2-Thiazoline and Imidazole. Crystal Structure of [Ni(i-MNT)(2a-5mt)(2)],” Bioorganic & Medicinal Chemistry 17, no. 16 (2009): 6054–62. PMID: 19608424
  • Martin Zacharias, “Minor Groove Deformability of DNA: A Molecular Dynamics Free Energy Simulation Study,” Biophysical Journal 91(2006): 882–891.
  • M. I. Moghaddam, H. M. Torshizi, A. Divsalar, and A. A. Saboury, “Synthesis, Characterization, Cytotoxicand DNA Binding Studies of Diimine Platinum(II) and Palladium(II) Complexes of Short HydrocarbonChain Ethyldithiocarbamate Ligand,” Journal of the Iranian Chemical Society 6, no. 3 (2009): 552–69.
  • George Scatchard, “The Attractions of Proteins for Small Molecules and Ions,” Annals of the New York Academy of Sciences 51, no. 4 (1949): 660–72.
  • Muhammad KashifAmir, Shahan ZebKhan, Faisal Hayat, Abbas Hassan, and Ian Butler, “Anticancer Activity, DNA-Binding and DNA-Denaturing Aptitude of Palladium(II) Dithiocarbamates,” Inorganica Chimica Acta 451 (2016): 31–40.
  • Francesca Rapparini, Yuen Yee Tam, Jerry D. Cohen, and Janet P. Slovin, “Indole-3-Acetic Acid Metabolism in Lemna Gibba Undergoes Dynamic Changes in Response to Growth Temperature,” Plant Physiology 128, no. 4 (2002): 1410–6.
  • G. A. Qureshi and S. M. Baig, “The Role of Tryptophan, 5-Hydroxyindole-3-Acetic Acid and Their Protein Binding in Uremic Patients,” Biochemistry and Molecular Biology International, 29 (1993): 411–9.
  • Alessandro Bertuzzi, Geltrude Mingrone, Alberto Gandolfi, Aldo V. Greco, Severin Ringoir, and Raymond Vanholder, “Binding of Indole-3-Acetic Acid to Human Serum Albumin and Competition with L-Tryptophan.” Clinica Chimica Acta 265 (1997): 183–92. doi:10.1016/S0009-8981(97)00117-4
  • Göran E. Nilsson, and Olof Tottmar, “Olof Tottmar, Biogenic Aldehydes in Brain: characteristics of a Reaction between Rat Brain Tissue and Indole-3-Acetaldehyde,” Journal of Neurochemistry 45, no. 3 (1985): 744–51.
  • Daniel Diengott, and Arthur I. Mirsky, “Hypoglycemic Action of Indole-3-Acetic Acid by Mouth in Patients with Diabetes Mellitus,” Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.) 93, no. 1 (1956): 109–10.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.