133
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Cu@KF/Clinoptilolite Nanoparticles Promoted Green Synthesis of Pyrimidine Derivatives: Study of Antioxidant Activity

, &
Pages 4019-4033 | Received 16 Nov 2020, Accepted 13 Jan 2021, Published online: 16 Apr 2021

References

  • (a) E. Petersen and D. R. Schmidt, “Sulfadiazine and Pyrimethamine in the Postnatal Treatment of Congenital Toxoplasmosis: What Are the Options,” Expert Review of Anti-Infective Therapy 1, no. 1 (2003): 175–82; (b) E. Nadal and E. Olavarria, “Imatinib mesylate (Gleevec/Glivec) a Molecular‐Targeted Therapy for Chronic Myeloid Leukaemia and Other Malignancies,” International Journal of Clinical Practice 58 (2004): 511–16.
  • T. P. Selvam, C. R. James, P. V. Dniandev, and S. K. Valzita, “A Mini Review of Pyrimidine and Fused Pyrimidine Marketed Drugs,” Research in Pharmacy 2 (2012): 1–9.
  • J. E. Herbert Pucheta, M. Candy, O. Colin, A. Requet, F. Bourdreux, E. Galmiche-Loire, A. Gaucher, C. Thomassigny, D. Prim, M. Mahfoudh, et al., “Understand, Elucidate and Rationalize the Coordination Mode of Pyrimidylmethylamines: An Intertwined Study Combining NMR and DFT Methods,” Physical Chemistry Chemical Physics: PCCP 17, no. 14 (2015): 8740–49.
  • (a) G. Brugnatelli, Annalen der Chemie und Pharmacie 65, no. 3 (1848): 269–6; (b) E. Frankland and H. Kolbe, Justus Liebigs Annalen der Chemie 65 (1848): 269–87.
  • A. Pinner, “Ueber Die Einwirkung Von Acetessigäther Auf Die Amidine,” Berichte Der Deutschen Chemischen Gesellschaft 17, no. 2 (1884): 2519–20.
  • A. Dömling, “Isocyanide Based Multicomponent Reactions in Combinatorial Chemistry,” Combinatorial Chemistry & High Throughput Screening 1, no. 1 (1998): 1–22.
  • A. Dömling and I. Ugi, “Multicomponent Reactions with Isocyanides,” Angewandte Chemie 39, no. 18 (2000): 3168–210.
  • L. Weber, “Multi-Component Reactions and Evolutionary Chemistry,” Drug Discovery Today 7, no. 2 (2002): 143–7.
  • J. Zhu and H. Bienaymé, Multicomponent Reactions (Veinheim: Wiley-VCH, 2005).
  • P. Wipf and C. Kendall, “Novel Applications of Alkenyl Zirconocenes,” Chemistry–A European Journal 8 (2002): 1779–84.
  • G. Balme, E. Bossharth, and N. Monteiro, “Cover Picture: Pd‐Assisted Multicomponent Synthesis of Heterocycles,” European Journal of Organic Chemistry 2003, no. 21 (2003): 4101–11.
  • A. Jacobi von Wangelin, H. Neumann, D. Gordes, S. Klaus, D. Strubing, and M. Beller, “Multicomponent Coupling Reactions for Organic Synthesis: Chemoselective Reactions with Amide-Aldehyde Mixtures,” Chemistry (Weinheim an Der Bergstrasse, Germany) 9, no. 18 (2003): 4286–94.
  • S. Heck and A. Dömling, “A Versatile Multi-Component One-Pot Thiazole Synthesis,” Synlett 2000 (2000): 424–6.
  • B. Ganem, “Strategies for Innovation in Multicomponent Reaction Design,” Accounts of Chemical Research 42, no. 3 (2009): 463–72.
  • (a) A. Shaabani, A. H. Maleki, A. Rezayan, and J. Sarvary, “Recent Progress of Isocyanide-Based Multicomponent Reactions in Iran,” Molecular Diversity, 15, no. 1 (2011): 41–68; (b) C. Altug, A. K. Burnett, E. Caner, Y. Dürüst, M. C. Elliott, R. P. J. Glanville, C. Guy, and A. D. Westwell, “An Efficient One-pot Multicomponent Approach to 5-Amino-7-aryl-8-nitrothiazolo[3,2-a]pyridines,” Tetrahedron 67 (2011): 9522–8.
  • F. Rostami-Charati, R. Hajinasiri, S. Z. Sayyed Alangi, and S. Afshari Sharif Abad, “ZnO-Nanorods as Economical Catalyst for Synthesis of 4-Amino-2-Iminodithiole Derivatives Using Tetramethyl Thiourea in Water,” Chemical Papers 70, no. 7 (2016): 907–12.
  • H. Sajjadi-Ghotbabadi, Sh. Javanshir, and F. Rostami-Charati, “Nano KF/Clinoptilolite: An Effective Heterogeneous Base Nanocatalyst for Synthesis of Substituted Quinolines in Water,” Catalysis Letters 146, no. 2 (2016): 338–44.
  • A. Soleimani, J. Asadi, F. Rostami-Charati, and R. Gharaei, “High Cytotoxicity and Apoptotic Effects of Natural Bioactive Benzofuran Derivative on the MCF-7 Breast Cancer Cell Line,” Combinatorial Chemistry & High Throughput Screening 18, no. 5 (2015): 505–13.
  • F. Rostami-Charati, Z. S. Hossaini, F. Sheikholeslami-Farahani, Z. Azizi, and S. A. Siadati, “Synthesis of 9H-furo [2,3-f]Chromene Derivatives by Promoting ZnO Nanoparticles,” Combinatorial Chemistry & High Throughput Screening 18, no. 9 (2015): 872–80.
  • M. N. Elinson, A. I. Ilovaisky, V. M. Merkulova, P. A. Belyakov, A. O. Chizhov, and G. I. Nikishin, “Highly Efficient and Convenient Strecker Reaction of Carbonyl Compounds and Amines with TMSCN Catalyzed by MCM-41 Anchored Sulfonic Acid as a Recoverable Catalyst,” Tetrahedron 66, no. 23 (2010): 4043–30.
  • L. Weber, “The Application of Multi-Component Reactions in Drug Discovery,” Current Medicinal Chemistry 9, no. 23 (2002): 2085–93.
  • A. Chanda and V. V. Fokin, “Organic Synthesis ‘On Water’,” Chemical Reviews 109, no. 2 (2009): 725–48.
  • R. N. Butler and A. G. Coyne, “Water: Nature's Reaction Enforcer-Comparative Effects for Organic Synthesis ‘In-Water’ and ‘On-Water’,” Chemical Reviews 110, no. 10 (2010): 6302–37.
  • M. O. Simon and C. Li, “Green Chemistry Oriented Organic Synthesis in Water,” Chemical Society Reviews 41, no. 4 (2012): 1415–27.
  • S. Rostamizadeh, M. Nojavan, R. Aryan, E. Isapoor, and M. Azad, “Amino Acid-Based Ionic Liquid Immobilized on α-Fe2O3-MCM-41: An Efficient Magnetic Nanocatalyst and Recyclable Reaction Media for the Synthesis of Quinazolin-4(3H)-One Derivatives,” Journal of Molecular Catalysis A: Chemical 374–375 (2013): 102–10.
  • D. Beydoun, R. Amal, G. Low, and S. McEvoy, “Characterization of Nanosized Partly Crystalline Photocatalysts,” Journal of Nanoparticle Research 1, no. 4 (1999): 439–58.
  • D. Habibi, M. Nasrollahzadeh, and H. Sahebekhtiari, “Green Synthesis of Formamides Using the Natrolite Zeolite as a Natural, Efficient and Recyclable Catalyst,” Journal of Molecular Catalysis A: Chemical 378 (2013): 148–55.
  • M. Nasrollahzadeh, M. Enayati, and M. Khalaj, “Synthesis of N-Arylureas in Water and Their N-Arylation with Aryl Halides Using Copper Nanoparticles Loaded on Natural Natrolite Zeolite under Ligand-Free Conditions,” RSC Advances 4, no. 50 (2014): 26264–70.
  • M. Nasrollahzadeh, S. M. Sajadi, A. Rostami-Vartooni, and M. Khalaj, “Natrolite Zeolite Supported Copper Nanoparticles as an Efficient Heterogeneous Catalyst for the 1,3-Diploar Cycloaddition and Cyanation of Aryl Iodides under Ligand-Free Conditions,” Journal of Colloid and Interface Science 453 (2015): 237–43.
  • Y. Tonbul, M. Zahmakiran, and S. Özkar, “Iridium(0) Nanoparticles Dispersed in Zeolite Framework: A Highly Active and Long-Lived Green Nanocatalyst for the Hydrogenation of Neat Aromatics at Room Temperature,” Applied Catalysis B: Environmental 148–149 (2014): 466–72.
  • F. Durap, M. Rakap, M. Aydemir, and S. Özkar, “Room Temperature Aerobic Suzuki Cross-Coupling Reactions in DMF/Water Mixture Using Zeolite Confined Palladium(0) Nanoclusters as Efficient and Recyclable Catalyst,” Applied Catalysis A: General 382, no. 2 (2010): 339–44.
  • D. Azarifar and F. Soleimanei, “Natural Indian Natrolite Zeolite-Supported Cu Nanoparticles: A New and Reusable Heterogeneous Catalyst for N-Arylation of Sulfonamides with Boronic Acids in Water under Ligand-Free Conditions,” RSC Advances 4, no. 24 (2014): 12119–26.
  • M. Zahmakiran and S. Özkar, “Zeolite-Confined Ruthenium(0) Nanoclusters Catalyst: Record Catalytic Activity, Reusability, and Lifetime in Hydrogen Generation from the Hydrolysis of Sodium Borohydride,” Langmuir: The ACS Journal of Surfaces and Colloids 25, no. 5 (2009): 2667–78.
  • M. Zahmakiran and S. Özkar, “Intrazeolite Ruthenium(0) Nanoclusters: A Superb Catalyst for the Hydrogenation of Benzene and the Hydrolysis of Sodium Borohydride,” Langmuir: The ACS Journal of Surfaces and Colloids 24, no. 14 (2008): 7065–7.
  • M. Zahmakiran and S. Özkar, “Zeolite Framework Stabilized Rhodium(0) Nanoclusters Catalyst for the Hydrolysis of Ammonia-Borane in Air: Outstanding Catalytic Activity, Reusability and Lifetime,” Applied Catalysis B: Environmental 89, no. 1–2 (2009): 104–10.
  • H.-Y. Chen, Z. Wei, M. Kollar, F. Gao, Y. Wang, J. Szanyi, and C. H. F. Peden, “A Comparative Study of N2O Formation during the Selective Catalytic Reduction of NOx with NH3 on Zeolite Supported Cu Catalysts,” Journal of Catalysis 329 (2015): 490–8.
  • D. W. Crandell, H. Zhu, X. Yang, J. Hochmuth, and M.-H. Baik, “Computational and Spectroscopic Characterization of Key Intermediates of the Selective Catalytic Reduction Cycle of NO on Zeolite-Supported Cu Catalyst,” Inorganica Chimica Acta 430 (2015): 132–43.
  • M. A. Khalilzadeh, H. Keipour, A. Hosseini, and D. Zareyee, “KF/Clinoptilolite, an Effective Solid Base in Ullmann Ether Synthesis Catalyzed by CuO Nanoparticles,” New Journal of Chemistry 38, no. 1 (2014): 42–5.
  • M. Amirsoleimani, M. A. Khalilzadeh, and D. Zareyee, “Preparation and Catalytic Evaluation of a Palladium Catalyst Deposited over Modified Clinoptilolite (Pd@MCP) for Chemoselective N-Formylation and N-Acylation of Amines,” Journal of Molecular Structure 1225 (2021): 129076.
  • M. Amirsoleimani, M. A. Khalilzadeh and D. Zareyee, “Nano-Sized Clinoptilolite as a Green Catalyst for the Rapid and Chemoselective N-Formylation of Amines,” Reaction Kinetics, Mechanisms and Catalysis 131, no. 2 (2020): 859–73.
  • J. Balou, M. A. Khalilzadeh, and D. Zareyee, “KF/Nano-Clinoptilolite Catalyzed Aldol-Type Reaction of Aldehydes with Ethyl Diazoacetate,” Catalysis Letters 147, no. 10 (2017): 2612–8.
  • M. A. Khalilzadeh, H. Sadeghifar, and R. Venditti, “Natural Clinoptilolite/KOH: An Efficient Heterogeneous Catalyst for Carboxymethylation of Hemicellulose,” Industrial & Engineering Chemistry Research 58, no. 27 (2019): 11680–8.
  • J. Balou, M. A. Khalilzadeh, and D. Zareyee, “An Efficient and Reusable Nano Catalyst for the Synthesis of Benzoxanthene and Chromene Derivatives,” Scientific Reports 9, no. 1 (2019): 1–9.
  • J. Ghanaat, M. A. Khalilzadeh, and D. Zareyee, “KF/CP NPs as an Efficient Nanocatalyst for the Synthesis of 1,2,4-Triazoles: Study of Antioxidant and Antimicrobial Activity,” Eurasian Chemical Communications 2 (2020): 202–12.
  • R. Oladee, D. Zareyee, and M. A. Khalilzadeh, “KF/Clinoptilolite Nanoparticles as an Efficient Nanocatalyst for the Strecker Synthesis of α-Aminonitriles,” Monatshefte für Chemie- Monatshefte für Chemie-Chemical Monthly 151 (2020): 611–5.
  • (a) A. Alizadeh, M. A. Khalilzadeh, E. Alipour, and D. Zareyee, “Pd (II) Immobilized on Clinoptilolite as a Highly Active Heterogeneous Catalyst for Ullmann Coupling-type S-Arylation of Thiols with Aryl Halides,” Combinatorial Chemistry & High Throughput Screening 23, no. 7 (2020): 658–66; (b) H. Keipour, M. A. Khalilzadeh, A. Hosseini, A. Pilevar, and D. Zareyee, “An Active and Selective Heterogeneous Catalytic System for Michael Addition,” Chinese Chemical Letters 23 (2012): 537–40; (c) M. A. Khalilzadeh, I. Yavari, and H. Sadeghifar, “N-Methylimidazole-Promoted Efficient Synthesis of 1,3-Oxazine-4-thiones under Solvent-free Conditions,” Monatshefte für Chemie-Chemical Monthly 140 (2009): 467–71.
  • (a) B. Halliwell, “Antioxidant Defence Mechanisms: From the Beginning to the End (of the Beginning),” Free Radical Research 31, no. 4 (1999): 261–72; (b) F. Ahmadi, M. Kadivar, and M. Shahedi, “Antioxidant Activity of Kelussia odoratissima Mozaff in Model and Food Systems,” Food Chemistry 105 (2007): 57–64.
  • M. A. Babizhayev, A. I. Deyev, V. N. Yermakova, I. V. Brikman, and J. Bours, “Lipid Peroxidation and Cataracts: N-Acetylcarnosine as a Therapeutic Tool to Manage Age-Related Cataracts in Human and in Canine Eyes,” Drugs in R&D 5, no. 3 (2004): 125–39.
  • L. Liu and M. Meydani, “Combined Vitamin C and E Supplementation Retards Early Progression of Arteriosclerosis in Heart Transplant Patients,” Nutrition Reviews 60 (2002): 368–71.
  • (a) Z. S. Hossaini, D. Zareyee, F. Sheikholeslami-Farahani, S. Vaseghi, and A. Zamani, “ZnO-NR as the Efficient Catalyst for the Synthesis of New Thiazole and Cyclopentadienone Phosphonate Derivatives in Water,” Heteroatom Chemistry 28, no. 2 (2017): e21362; (b) F. Rostami-charati, Z. S. Hossaini, D. Zareyee, S. Afrashteh, and M. Hosseinzadeh, “ZnO‐Nanorods as an Efficient Catalyst for the Synthesis of 1,3‐Thiazolidine Derivatives by Aqueous Multicomponent Reactions of Isothiocyanates,” Journal of Heterocyclic Chemistry 54 (2017): 1937–42.
  • F. Rostami-Charati, Z. Hossaini, R. Rostamian, M. Ghambarian, A. Zamani, and M. Abdoli, “Regioselctive Thiocyanation of Aromatic and Heteroaromatic Compounds Using a Novel Bronsted Acidic Ionic Liquid,” Chemistry of Heterocyclic Compounds 53, no. 4 (2017): 480–27.
  • F. Tavakolinia, T. Baghipour, Z. Hossaini, D. Zareyee, M. A. Khalilzadeh, and M. Rajabi, “Antiproliferative Activity of Novel Thiopyran Analogs on MCF-7 Breast and HCT-15 Colon Cancer Cells: Synthesis, Cytotoxicity, Cell Cycle Analysis, and DNA-binding,” Nucleic Acid Therapeutics 22, no. 4 (2012): 265–70.
  • (a) I. Yavari, S. Seyfi, Z. S. Hossaini, M. Sabbaghan, and F. Shirgahi-Talari, “Efficient Synthesis of 2-Thioxo-1,3-thiazolanes from Primary Amines, CS2, and Ethyl Bromopyruvate,” Monatshefte für Chemie - Chemical Monthly 139, no. 12 (2008): 1479–82; (b) M. A. Khalilzadeh, Z. S. Hossaini, M. M. Baradarani, and A. Hasannia, “A Novel Isocyanide-based Three-component Reaction: A Facile Synthesis of Substituted 2H-Pyran-3, 4-Dicarboxylates,” Tetrahedron 66 (2010): 8464–7; (c) R. Hajinasiri, Z. S. Hossaini, and F. Rostami‐Charati, “Efficient Synthesis of α‐Aminophosphonates via One‐pot Reactions of Aldehydes, Amines, and Phosphates in Ionic Liquid,” Heterocyclic Chemistry 22 (2011): 625–9.
  • S. Rezayati, F. Sheikholeslami-Farahani, Z. Hossaini, R. Hajinasiri, and S. A. S. Abad, “Regioselctive Thiocyanation of Aromatic and Heteroaromatic Compounds Using a Novel Bronsted Acidic Ionic Liquid,” Combinatorial Chemistry & High Throughput Screening 19, no. 9 (2016): 720–7.
  • I. Yavari, M. Ghazanfarpour-Darjani, Z. S. Hossaini, M. Sabbaghan, and N. Hosseini, “Methoxide Ion Promoted Efficient Synthesis of 1,3-Oxathiolane-2-Thiones by Reaction of Oxiranes and Carbon Disulfide,” Synlett 2008, no. 6 (2008): 889–91.
  • I. Yavari, M. Nematpour, and Z. S. Hossaini, “Ph3P-Mediated One-Pot Synthesis of Functionalized 3,4-Dihydro-2H-1,3-Thiazines from N,N′-Dialkylthioureas and Activated Acetylenes in Water,” Monatshefte für Chemie - Chemical Monthly 141, no. 2 (2010): 229–32.
  • I. Yavari, Z. S. Hossaini, S. Souri, and S. Seyfi, “Diastereoselective Synthesis of Fused [1,3]thiazolo[1,3]oxazins and [1,3]oxazino[2,3-b][1,3]benzothiazoles,” Molecular Diversity 13, no. 4 (2009): 439–43.
  • F. Khaleghi, I. Jantan, L. B. Din, W. A. Yaacob, M. A. Khalilzadeh, and S. N. A. Bukhari, “Solvent-Free Microwave Extraction of Essential oil of Artemisia tschernieviana,” Journal of Natural Medicines 68, no. 2 (2014): 351–90.
  • A. M. Bidchol, A. Wilfred, P. Abhijna, and R. Harish, “Free Radical Scavenging Activity of Aqueous and Ethanolic Extract of Brassica Oleracea L. var. italica,” Food and Bioprocess Technology 4, no. 7 (2011): 1137–43.
  • K. Shimada, K. Fujikawa, K. Yahara, and T. Nakamura, “Antioxidative Properties of Xanthan on the Autoxidation of Soybean Oil in Cyclodextrin Emulsion,” Journal of Agricultural and Food Chemistry 40, no. 6 (1992): 945–8.
  • G. C. Yen and P. D. Duh, “Scavenging Effect of Methanolic Extracts of Peanut Hulls on Free-Radical and Active-Oxygen Species,” Journal of Agricultural and Food Chemistry 42, no. 3 (1994): 629–32.
  • A. Yildirim, A. Mavi, and A. A. Kara, “Determination of Antioxidant and Antimicrobial Activities of Rumex Crispus L. Extracts,” Journal of Agricultural and Food Chemistry 49, no. 8 (2001): 4083–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.