162
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Design, Synthesis, and Biological Screening for Cytotoxic Activity of Monastrol Analogues

, ORCID Icon, , & ORCID Icon
Pages 4863-4877 | Received 09 Jan 2021, Accepted 26 Mar 2021, Published online: 27 Apr 2021

References

  • F. Kurniawan, Y. Miura, R. E. Kartasasmita, A. Mutalib, N. Yoshioka, and D. H. Tjahjono, “In Silico Study, Synthesis, and Cytotoxic Activities of Porphyrin Derivatives,” Pharmaceuticals 11, no. 1 (2018): 8–18.
  • G. Charitos, D. T. Trafalis, P. Dalezis, C. Potamitis, V. Sarli, P. Zoumpoulakis, and C. Camoutsis, “Synthesis and Anticancer Activity of Novel 3,6-Disubstituted 1,2,4-Triazolo-[3,4-b]-1,3,4-Thiadiazole Derivatives,” Arabian Journal of Chemistry 12, no. 8 (2019): 4784–94.
  • F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal, “Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries,” CA: A Cancer Journal for Clinicians 68, no. 6 (2018): 394–424.
  • E. S. Moghadam, F. Saravani, S. Ostad, S. Tavajohi, M. P. Hamedani, and M. Amini, “Design, Synthesis and Cytotoxicity Evaluation of Indibulin Analogs,” Heterocyclic Communications 24, no. 4 (2018): 211–7.
  • A. T. A. Borae, P. K. Singh, M. Sechi, and S. Satta, “Discovery of Novel Functionalized 1,2,4-Triazoles as PARP-1 Inhibitors in Breast Cancer: Design, Synthesis and Antitumor Activity Evaluation,” European Journal of Medicinal Chemistry 182 (2019): 111621.
  • M. M. Ghorab, M. S. Alsaid, M. S. Al-Dosary, Y. M. Nissan, and S. M. Attia, “Design, Synthesis and Anticancer Activity of Some Novel Thioureido-Benzenesulfonamides Incorporated Biologically Active Moieties,” Chemistry Central Journal 10, no. 1 (2016): 1–13.
  • P. Doan, A. Karjalainen, J. G. Chandraseelan, O. Sandberg, O. Yli-Harja, T. Rosholm, R. Franzen, N. R. Candeias, and M. Kandhavelu, “Synthesis and Biological Screening for Cytotoxic Activity of N-Substituted Indolines and Morpholines,” European Journal of Medicinal Chemistry 120 (2016): 296–303.
  • N. Gurrapu, E. P. Kumar, P. K. Kolluri, S. Putta, S. K. Sivan, and N. J. P. Subhashini, “Synthesis, Biological Evaluation and Molecular Docking Studies of Novel 1,2,3-Triazole Tethered Chalcone Hybrids as Potential Anticancer,” Journal Molecular Structure 1217 (2020): 1–12.
  • N. Foroughifar, S. Karimi Beromi, H. Pasdar, and M. Shahi, “Synthesis of Some New Tetrahydropyrimidine Derivatives as Possible Antibacterial Agents,” Iranian Journal of Pharmaceutical Research: IJPR 16 (2017): 596–601.
  • T. U. Mayer, T. M. Kapoor, S. J. Haggarty, R. W. King, S. L. Schreiber, and T. J. Mitchison, “Small Molecule Inhibitor of Mitotic Spindle Bipolarity Identified in a Phenotype-Based Screen,” Science (New York, N.Y.) 286, no. 5441 (1999): 971–4.
  • A. Bouzina, M. Berredjem, B. Belhani, S. Bouacida, C. Marminon, M. L. Borgne, Z. Bouaziz, and M. Aissaoui, “Microwave-Accelerated Multicomponent Synthesis and X-Ray Characterization of Novel Benzothiadiazinone Dioxide Derivatives, Analogues of Monastrol,” Research on Chemical Intermediates 47, no. 4 (2021): 1359–76.
  • I. Leizerman, R. Avunie-Masala, M. Elkabets, A. Fich, and L. Gheber, “Differential Effects of Monastrol in Two Human Cell Lines,” Cellular and Molecular Life Sciences: CMLS 61, no. 16 (2004): 2060–70.
  • D. Russowsky, R. F. S. Canto, S. A. A. Sanches, M. G. M. D'Oca, A. de Fátima, R. A. Pilli, L. K. Kohn, M. A. Antônio, and J. E. de Carvalho, “Synthesis and Differential Antiproliferative Activity of Biginelli Compounds against Cancer Cell Lines: Monastrol, Oxo-Monastrol and Oxygenated Analogues,” Bioorganic Chemistry 34, no. 4 (2006): 173–82.
  • M. H. El‐Hamamsy, N. A. Sharafeldin, T. F. El‐Moselhy, and H. O. Tawfik, “Design, Synthesis, and Molecular Docking Study of Newmonastrol Analogues as Kinesin Spindle Protein Inhibitors,”Archiv Der Pharmazie 353, no. 8 (2020): 2000060.
  • A. Iraji, A. Nouri, N. Edraki, S. Pirhadi, M. Khoshneviszadeh, and M. Khoshneviszadeh, “One-Pot Synthesis of Thioxo-Tetrahydropyrimidine Derivatives as Potent β-Glucuronidase Inhibitor, Biological Evaluation, Molecular Docking and Molecular Dynamics Studies,” Bioorganic and Medicinal Chemistry 28 (2020): 1–8.
  • R. Sivaramakarthikeyan, A. Karuppasamy, S. Iniyaval, K. Padmavathy, W.-M. Lim, C.-W. Mai, and C. Ramalingan, “Phenothiazine and Amide-Ornamented Novel Nitrogen Heterocyclic Hybrids: Synthesis, Biological and Molecular Docking Studies,” New Journal of Chemistry 44, no. 10 (2020): 4049–60.
  • V. P. de Souza, F. S. Santos, F. S. Rodembusch, C. B. Braga, C. Ornelas, R. A. Pilli, and D. Russowsky, “Hybrid 3,4-Dihydropyrimidin-2-(Thi)Ones as Dual-Functional Bioactive Molecules: Fluorescent Probes and Cytotoxic Agents to Cancer Cells,” New Journal of Chemistry 44, no. 29 (2020): 12440–51.
  • S. K. Ramadan, K. N. M. Halim, S. A. Rizk, and M. A. El-Hashash, “Cytotoxic Activity and Density Functional Theory Studies of Some 1,3-Diphenylpyrazolyltetrahydropyrimidine Derivatives,” Journal of the Iranian Chemical Society 17, no. 7 (2020): 1575–89.
  • Y. Liu, J. Liu, R. Zhang, Y. Guo, H. Wang, Q. Meng, Y. Sun, and Z. Liu, “Synthesis, Characterization, and Anticancer Activities Evaluation of Compounds Derived from 3,4-Dihydropyrimidin-2(1H)-One,” Molecules 24, no. 5 (2019): 891.
  • H. Atapour-Mashhad, M. Soukhtanloo, A. Massoudi, A. Shiri, and M. Bakavoli, “Synthesis and Evaluation of Cytotoxicity of 6-Amino-4-Aryl-2-Thioxo-1,2,3,4-Tetrahydropyrimidine-5-Carbonitriles,” Russian Journal of Bioorganic Chemistry 42, no. 3 (2016): 316–22.
  • L. Wu, X. Ma, X. Yang, and C. Zhang, “Synthesis and Biological Evaluation of b-Lapachone-Monastrol Hybrids as Potential Anticancer Agents,” European Journal of Medicinal Chemistry 203 (2020): 112594.
  • M. S. Malik, Z. S. Seddigi, S. Bajee, S. Azeeza, S. Riyaz, S. A. Ahmed, I. I. Althagafi, Q. M. S. Jamal, and A. Kamal, “Multicomponent Access to Novel Proline/Cyclized Cysteine Tethered Monastrol Conjugates as Potential Anticancer Agents,” Journal of Saudi Chemical Society 23, no. 4 (2019): 503–13.
  • N. Razzaghi-Asl, M. Kamrani-Moghadam, B. Farhangi, R. Vahabpour, R. Zabihollahi, and S. Sepehri, “Design, Synthesis and Evaluation of Cytotoxic, Antimicrobial, and anti-HIV-1 Activities of New 1,2,3,4-Tetrahydropyrimidine Derivatives,” Research in Pharmaceutical Sciences 14, no. 2 (2019): 155–66.
  • S. Safari, R. Ghavimi, N. Razzaghi-Asl, and S. Sepehri, “Synthesis, Biological Evaluation and Molecular Docking Study of Dihydropyrimidine Derivatives as Potential Anticancer Agents,” Journal of Heterocyclic Chemistry 57, no. 3 (2020): 1023–33.
  • G. D. Marconi, S. Carradori, A. Ricci, P. Guglielmi, A. Cataldi, and S. Zara, “Kinesin Eg5 Targeting Inhibitors as a New Strategy for Gastric Adenocarcinoma Treatment,” Molecules 24, no. 21 (2019): 3948.
  • R. Esmaeili, L. Kafi-Ahmadi, and S. Khademinia, “A Highly Efficient One-Pot Multicomponent Synthesis of 3,4-Dihydropyrimidin-2-(1H)-Ones/Thiones Catalyzed by Strontium Pyroarsenate Nano-Plates,” Journal of Molecular Structure 1216 (2020): 128124.
  • J. Safari and S. Gandomi-Ravandi, “Decoration of Multi-Walled Carbon Nanotubes with NiO Nanoparticles and Investigation on Their Catalytic Activity to Synthesize Pyrimidinone Heterocycles,” Journal of the Iranian Chemical Society 12, no. 1 (2015): 147–54.
  • N. Azizi and M. Edrisi, “Preparation of Choline Sulfate Ionic Liquid Supported on Porous Graphitic Carbon Nitride Nanosheets by Simple Surface Modification for Enhanced Catalytic Properties,” Journal of Molecular Liquids 300 (2020): 112263.
  • C. K. Khatri, S. M. Potadar, and G. U. Chaturbhuj, “A Reactant Promoted Solvent Free Synthesis of 3,4-Dihydropyrimidin-2(1H)-Thione Analogues Using Ammonium Thiocyanate,” Tetrahedron Letters 58, no. 18 (2017): 1778–80.
  • S. Moussa, A. Mehri, and B. Badraoui, “Magnesium Modified Calcium Hydroxyapatite: An Efficient and Recyclable Catalyst for the One-Pot Biginelli Condensation,” Journal of Molecular Structure 1200 (2020): 127111–7.
  • H. Alinezhad and K. Pakzad, “Green Synthesis of Copper Oxide Nanoparticles with an Extract of Euphorbia Maculata and Their Use in the Biginelli Reaction,” Organic Preparations and Procedures International 52, no. 4 (2020): 319–27.
  • K. Selvakumar, T. Shanmugaprabha, M. Kumaresan, and P. Sami, “Heteropoly Acid Supported on Activated Natural Clay-Catalyzed Synthesis of 3,4-Dihydropyrimidinones/Thiones through Biginelli Reaction under Solvent-Free Conditions,” Synthetic Communications 48, no. 2 (2018): 223–32.
  • Maria Damgaard, Anas Al-Khawaja, Mia Nittegaard-Nielsen, Rebekka F. Petersen, Petrine Wellendorph, and Bente Frølund, “Monastrol, a 3,4-Dihydropyrimidin-2(1H)-Thione, as Structural Scaffold for the Development of Modulators for GHB High-Affinity Binding Site Sand α1β2δ GABAA Receptors,” European Journal of Medicinal Chemistry 138 (2017): 300–12.
  • S. Sepehri, L. Saghaie, and A. Fassihi, “Anti-HIV‐1 Activity Prediction of Novel Gp41 Inhibitors Using Structure‐Based Virtual Screening and Molecular Dynamics Simulation,” Molecular Informatics 36, no. 3 (2017): 1600060.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.