374
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Emission Factors of Polycyclic Aromatic Hydrocarbons and Oxidative Potential of Fine Particles Emitted from Crop Residues Burning

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 5123-5142 | Received 30 Mar 2020, Accepted 19 Apr 2021, Published online: 19 May 2021

References

  • J. Chen, C. Li, Z. Ristovski, A. Milic, Y. Gu, M. S. Islam, S. Wang, J. Hao, H. Zhang, C. He, et al. “A Review of Biomass Burning: Emissions and Impacts on Air Quality, Health and Climate in China.” The Science of the Total Environment 579 (2017): 1000–1034. http://www.sciencedirect.com/science/article/pii/S0048969716324561.
  • R. Dhammapala, C. Claiborn, J. Jimenez, J. Corkill, B. Gullett, C. Simpson, and M. Paulsen, “Emission Factors of PAHs, Methoxyphenols, Levoglucosan, Elemental Carbon and Organic Carbon from Simulated Wheat and Kentucky Bluegrass Stubble Burns,” Atmospheric Environment 41, no. 12 (2007): 2660–9.
  • B. M. Jenkins, L. L. Baxter, T. R. Miles, and T. R. Miles, “Combustion Properties of Biomass Flash,” Fuel Processing Technology 54, no. 1–3 (1998): 17–46.
  • H. Keshtkar, and L. L. Ashbaugh, “Size Distribution of Polycyclic Aromatic Hydrocarbon Particulate Emission Factors from Agricultural Burning,” Atmospheric Environment 41, no. 13 (2007): 2729–39.
  • B. R. T. Simoneit, “Biomass burning - A Review of Organic Tracers for Smoke from Incomplete Combustion,” Applied Geochemistry 17, no. 3 (2002): 129–162.
  • R. W. Atkinson, S. Kang, H. R. Anderson, I. C. Mills, and H. A. Walton, “Epidemiological Time Series Studies of PM2.5 and Daily Mortality and Hospital Admissions: A Systematic Review and Meta-Analysis,” Thorax 69, no. 7 (2014): 660–5. http://thorax.bmj.com/content/69/7/660.abstract.
  • I. I. I C. A. Pope, R. T. Burnett, M. J. Thun, E. E. Calle, D. Krewski, K. Ito, and G. D. Thurston, “Lung Cancer, Cardiopulmonary Mortality, and Long-Term Exposure to Fine Particulate Air Pollution,” JAMA 287, no. 9 (2002): 1132–41. https://doi.org/10.1001/jama.287.9.1132.
  • A. De Vizcaya-Ruiz, M. E. Gutiérrez-Castillo, M. Uribe-Ramirez, M. E. Cebrián, V. Mugica-Alvarez, J. Sepúlveda, I. Rosas, E. Salinas, C. Garcia-Cuéllar, F. Martínez, “Characterization and In Vitro Biological Effects of Concentrated Particulate Matter from Mexico City.” Particulate Matter Supersites Program and Related Studies 40 (2006): 583–592. http://www.sciencedirect.com/science/article/pii/S1352231006006169.
  • N. de Oliveira Alves, A. T. Vessoni, A. Quinet, R. S. Fortunato, G. S. Kajitani, M. S. Peixoto, Hacon. S de S, P. Artaxo, P. Saldiva, C. F. M. Menck, et al. “ Biomass Burning in the Amazon Region Causes DNA Damage and Cell Death in Human Lung Cells,” Scientific Reports 7, no. 1 (2017): 10937..
  • W. Y. Tuet, Y. Chen, L. Xu, S. Fok, D. Gao, R. J. Weber, and N. L. Ng, “Chemical Oxidative Potential of Secondary Organic Aerosol (SOA) Generated from the Photooxidation of Biogenic and Anthropogenic Volatile Organic Compounds,” Atmospheric Chemistry and Physics 17, no. 2 (2017): 839–53. https://www.atmos-chem-phys.net/17/839/2017/.
  • A. Nel, “Atmosphere. Air Pollution-Related Illness: Effects of Particles,” Science (New York, N.Y.) 308, no. 5723 (2005): 804–6. http://science.sciencemag.org/content/308/5723/804.abstract.
  • A. Mousavi, M. H. Sowlat, S. Hasheminassab, A. Polidori, M. M. Shafer, J. J. Schauer, and C. Sioutas, “Impact of Emissions from the Ports of Los Angeles and Long Beach on the Oxidative Potential of Ambient PM0.25 Measured across the Los Angeles County,” Science of the Total Environment 651 (2019): 638–47. http://www.sciencedirect.com/science/article/pii/S004896971833599X.
  • J. T. Bates, R. J. Weber, J. Abrams, V. Verma, T. Fang, M. Klein, M. J. Strickland, S. E. Sarnat, H. H. Chang, J. A. Mulholland, et al. “ Reactive Oxygen Species Generation Linked to Sources of Atmospheric Particulate Matter and Cardiorespiratory Effects,” Environmental Science & Technology 49, no. 22 (2015): 13605–12. https://doi.org/10.1021/acs.est.5b02967.
  • G. L. Squadrito, R. Cueto, B. Dellinger, and W. A. Pryor, “Quinoid Redox Cycling as a Mechanism for Sustained Free Radical Generation by Inhaled Airborne Particulate Matter,” Free Radical Biology & Medicine 31, no. 9 (2001): 1132–8. http://www.sciencedirect.com/science/article/pii/S0891584901007031.
  • J. T. Bates, T. Fang, V. Verma, L. Zeng, R. J. Weber, P. E. Tolbert, J. Y. Abrams, S. E. Sarnat, M. Klein, J. A. Mulholland, et al. “Review of Acellular Assays of Ambient Particulate Matter Oxidative Potential: Methods and Relationships with Composition, Sources, and Health Effects,” Environmental Science & Technology 53, no. 8 (2019): 4003–19. https://doi.org/10.1021/acs.est.8b03430.
  • J. A. Araujo, B. Barajas, M. Kleinman, X. Wang, B. J. Bennett, K. W. Gong, M. Navab, J. Harkema, C. Sioutas, A. J. Lusis, et al. “ Ambient Particulate Pollutants in the Ultrafine Range Promote Early Atherosclerosis and Systemic Oxidative Stress,” Circulation Research 102, no. 5 (2008): 589–96.
  • N. Li, C. Sioutas, A. Cho, D. Schmitz, C. Misra, J. Sempf, M. Wang, T. Oberley, J. Froines, and A. Nel, “Ultrafine Particulate Pollutants Induce Oxidative Stress and Mitochondrial Damage,” Environmental Health Perspectives 111, no. 4 (2003): 455–60. https://doi.org/10.1289/ehp.6000.
  • A. K. Cho, C. Sioutas, A. H. Miguel, Y. Kumagai, D. A. Schmitz, M. Singh, A. Eiguren-Fernandez, and J. R. Froines, “Redox Activity of Airborne Particulate Matter at Different Sites in the Los Angeles Basin,” Environmental Research 99, no. 1 (2005): 40–7. http://www.sciencedirect.com/science/article/pii/S0013935105000058.
  • G. Simonetti, E. Conte, L. Massimi, D. Frasca, C. Perrino, S. Canepari, “Oxidative Potential of Particulate Matter Components Generated by Specific Emission Sources.” Journal of Aerosol Science 126 (2018): 99–109. http://www.sciencedirect.com/science/article/pii/S0021850218302155.
  • A. Saffari, N. Daher, M. M. Shafer, J. J. Schauer, and C. Sioutas, “Seasonal and Spatial Variation in Dithiothreitol (DTT) Activity of Quasi-Ultrafine Particles in the Los Angeles Basin and Its Association with Chemical Species,” Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering 49, no. 4 (2014): 441–51.
  • N. L. Briggs, and C. M. Long, “Critical Review of Black Carbon and Elemental Carbon Source Apportionment in Europe and the United States,” Atmospheric Environment 144 (2016): 409–27.
  • J. Jung, S. Lee, H. Kim, D. Kim, H. Lee, and S. Oh, “Quantitative Determination of the Biomass-Burning Contribution to Atmospheric Carbonaceous Aerosols in Daejeon, Korea, during the Rice-Harvest Period,” Atmospheric Environment 89 (2014): 642–50. http://www.sciencedirect.com/science/article/pii/S135223101400171X.
  • Z. Fang, W. Deng, Y. Zhang, X. Ding, M. Tang, T. Liu, Q. Hu, M. Zhu, Z. Wang, W. Yang, et al. “Open Burning of Rice, Corn and Wheat Straws: primary Emissions, Photochemical Aging, and Secondary Organic Aerosol Formation,” Atmospheric Chemistry and Physics 17, no. 24 (2017): 14821–39. https://www.atmos-chem-phys.net/17/14821/2017/.
  • A. Price-Allison, A. R. Lea-Langton, E. J. S. Mitchell, B. Gudka, J. M. Jones, P. E. Mason, and A. Williams, “Emissions Performance of High Moisture Wood Fuels Burned in a Residential Stove,” Fuel 239 (2019): 1038–45. http://www.sciencedirect.com/science/article/pii/S0016236118319859.
  • J. G. Watson, “Visibility: Science and Regulation,” Journal of the Air & Waste Management Association (1995) 52, no. 6 (2002): 628–713. https://doi.org/10.1080/10473289.2002.10470813.
  • E. Garshick, F. Laden, J. E. Hart, B. Rosner, T. J. Smith, D. W. Dockery, and F. E. Speizer, “Lung Cancer in Railroad Workers Exposed to Diesel Exhaust,” Environmental Health Perspectives 112, no. 15 (2004): 1539–43.
  • IARC (International Agency for Research on Cancer), Diesel and Gasoline Engine Exhausts and Some Nitroarenes. IARC Monographs on the Evaluation of Carcinogenic Risk to Humans, Vol.105. (Lyon: IARC, 2013), 1–484.
  • C. A. Pope, and D. W. Dockery, “Health Effects of Fine Particulate Air Pollution: Lines That Connect,” Journal of the Air & Waste Management Association (1995) 56, no. 6 (2006): 709–42.
  • IARC. Monographs on the evaluation of the carcinogenic risks to humans. List of classifications. International Agency for Research on Cancer. Lyon, France, World Health Organization, Switzerland. 2012;1–123, Sup. https://monographs.iarc.fr/list-of-classifications-volumes/
  • J. Ding, J. Zhong, Y. Yang, B. Li, G. Shen, Y. Su, C. Wang, W. Li, H. Shen, B. Wang, et al. “Occurrence and Exposure to Polycyclic Aromatic Hydrocarbons and Their Derivatives in a Rural Chinese Home through Biomass Fuelled Cooking,” Environmental Pollution 169 (2012): 160–6. http://dx.doi.org/10.1016/j.envpol.2011.10.008.
  • I. Jakovljević, G. Pehnec, V. Vađić, M. Čačković, V. Tomašić, and J. D. Jelinić, “Polycyclic Aromatic Hydrocarbons in PM10, PM2.5 and PM1 Particle Fractions in an Urban Area,” Air Quality, Atmosphere & Health 11, no. 7 (2018): 843–54.
  • A. R. Lea-Langton, D. V. Spracklen, S. R. Arnold, L. A. Conibear, J. Chan, E. J. S. Mitchell, J. M. Jones, and A. Williams, “PAH Emissions from an African Cookstove,” Journal of the Energy Institute 92, no. 3 (2019): 587–93. https://doi.org/10.1016/j.joei.2018.03.014.
  • K. Ravindra, and R. Sokhi, “Atmospheric Polycyclic Aromatic Hydrocarbons: Source Attribution, Emission Factors and Regulation,” Atmospheric Environment 42 (2008): 2895–921.
  • G. Shen, S. Tao, Y. Chen, Y. Zhang, S. Wei, M. Xue, B. Wang, R. Wang, Y. Lu, W. Li, et al. “ Emission Characteristics for Polycyclic Aromatic Hydrocarbons from Solid Fuels Burned in Domestic Stoves in Rural China,” Environmental Science & Technology 47, no. 24 (2013): 14485–94.
  • G. Shen, S. Wei, Y. Zhang, R. Wang, B. Wang, W. Li, H. Shen, Y. Huang, Y. Chen, H. Chen, et al. “ Emission of Oxygenated Polycyclic Aromatic Hydrocarbons from Biomass Pellet Burning in a Modern Burner for Cooking in China,” Atmospheric Environment 60 (2012): 234–7. http://dx.doi.org/10.1016/j.atmosenv.2012.06.067.
  • Y. Wang, Y. Xu, Y. Chen, C. Tian, Y. Feng, T. Chen, J. Li, and G. Zhang, “Influence of Different Types of Coals and Stoves on the Emissions of Parent and Oxygenated PAHs from Residential Coal Combustion in China,” Environmental Pollution (Barking, Essex : 1987) 212 (2016): 1–8. https://doi.org/10.1016/j.envpol.2016.01.041.
  • T. C. Bond, S. J. Doherty, D. W. Fahey, P. M. Forster, T. Berntsen, B. J. DeAngelo, M. G. Flanner, S. Ghan, B. Kärcher, D. Koch, et al. “ Bounding the Role of Black Carbon in the Climate System: A Scientific Assessment,” Journal of Geophysical Research: Atmospheres 118, no. 11 (2013): 5380–552. http://dx.doi.org/10.1002/jgrd.50171.
  • T. J. Christian, R. J. Yokelson, B. Cárdenas, L. T. Molina, G. Engling, and S.-C. Hsu, “Trace Gas and Particle Emissions from Domestic and Industrial Biofuel Use and Garbage Burning in Central Mexico,” Atmospheric Chemistry and Physics 10, no. 2 (2010): 565–84. https://www.atmos-chem-phys.net/10/565/2010/.
  • K. Hayashi, K. Ono, M. Kajiura, S. Sudo, S. Yonemura, A. Fushimi, K. Saitoh, Y. Fujitani, and K. Tanabe, “Trace Gas and Particle Emissions from Open Burning of Three Cereal Crop Residues: Increase in Residue Moistness Enhances Emissions of Carbon Monoxide, Methane, and Particulate Organic Carbon,” Atmospheric Environment 95, (2014): 36–44. http://www.sciencedirect.com/science/article/pii/S1352231014004695.
  • T. Jayarathne, C. E. Stockwell, P. V. Bhave, P. S. Praveen, C. M. Rathnayake, M. R. Islam, A. K. Panday, S. Adhikari, R. Maharjan, J. D. Goetz, et al. “Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): Emissions of Particulate Matter from Wood- and Dung-Fueled Cooking Fires, Garbage and Crop Residue Burning, Brick Kilns, and Other Sources,” Atmospheric Chemistry and Physics 18, no. 3 (2018): 2259–86. https://www.atmos-chem-phys.net/18/2259/2018/.
  • H. Ni, Y. Han, J. Cao, L.-W. A. Chen, J. Tian, X. Wang, J. C. Chow, J. G. Watson, Q. Wang, P. Wang, et al. “Emission Characteristics of Carbonaceous Particles and Trace Gases from Open Burning of Crop Residues in China,” PM2.5 Research in the Yangtze River Delta: Observations, Processes, Modeling and Health Effects 123 (2015): 399–406. https://www.sciencedirect.com/science/article/pii/S1352231015300819.
  • R. R. Romasanta, B. O. Sander, Y. K. Gaihre, M. C. Alberto, M. Gummert, J. Quilty, V. H. Nguyen, A. G. Castalone, C. Balingbing, J. Sandro, et al. “How Does Burning of Rice Straw Affect CH4 and N2O Emissions? A Comparative Experiment of Different on-Field Straw Management Practices,” Agriculture, Ecosystems & Environment 239 (2017): 143–53. http://www.sciencedirect.com/science/article/pii/S0167880916306302.
  • E. Sanchis, M. Ferrer, S. Calvet, C. Coscollà, V. Yusà, and M. Cambra-López, “Gaseous and Particulate Emission Profiles during Controlled Rice Straw Burning,” Atmospheric Environment 98 (2014): 25–31. http://www.sciencedirect.com/science/article/pii/S1352231014005925.
  • S. Sillapapiromsuk, S. Chantara, U. Tengjaroenkul, S. Prasitwattanaseree, and T. Prapamontol, “Determination of PM10 and Its Ion Composition Emitted from Biomass Burning in the Chamber for Estimation of Open Burning Emissions,” Chemosphere 93, no. 9 (2013): 1912–9. http://www.sciencedirect.com/science/article/pii/S0045653513009284.
  • D. Sirithian, S. Thepanondh, M. L. Sattler, and W. Laowagul, “Emissions of Volatile Organic Compounds from Maize Residue Open Burning in the Northern Region of Thailand,” Atmospheric Environment 176 (2018): 179–87. http://www.sciencedirect.com/science/article/pii/S1352231017308798.
  • J. Tian, H. Ni, J. Cao, Y. Han, Q. Wang, X. Wang, L.-W. A. Chen, J. C. Chow, J. G. Watson, C. Wei, et al. “Characteristics of Carbonaceous Particles from Residential Coal Combustion and Agricultural Biomass Burning in China,” Atmospheric Pollution Research 8, no. 3 (2017): 521–7. https://www.sciencedirect.com/science/article/pii/S1309104216302896.
  • N. Santiago-De La Rosa, G. González-Cardoso, J. de J. Figueroa-Lara, M. Gutiérrez-Arzaluz, C. Octaviano-Villasana, I. F. Ramírez-Hernández, and V. Mugica-Álvarez, “Emission Factors of Atmospheric and Climatic Pollutants from Crop Residues Burning,” Journal of the Air & Waste Management Association (1995) 68, no. 8 (2018): 849–65. https://doi.org/10.1080/10962247.2018.1459326.
  • W. Du, X. Yun, Y. Chen, Q. Zhong, W. Wang, L. Wang, M. Qi, G. Shen, and S. Tao, “PAHs Emissions from Residential Biomass Burning in Real-World Cooking Stoves in Rural China,” Environmental Pollution 267 (2020): 115592. https://doi.org/10.1016/j.envpol.2020.115592.
  • V. Mugica-Álvarez, F. Hernández-Rosas, M. Magaña-Reyes, J. Herrera-Murillo, N. Santiago-De La Rosa, M. Gutiérrez-Arzaluz, J. de Jesús Figueroa-Lara, and G. González-Cardoso, “Sugarcane Burning Emissions: Characterization and Emission Factors,” Atmospheric Environment 193 (2018): 262–72. http://www.sciencedirect.com/science/article/pii/S1352231018305995.
  • M. E. Birch, and R. A. Cary, “Elemental Carbon-Based Method for Monitoring Occupational Exposures to Particulate Diesel Exhaust,” Aerosol Science and Technology 25, no. 3 (1996): 221–41.
  • Y. M. Han, J. J. Cao, S. C. Lee, K. F. Ho, and Z. S. An, “Different Characteristics of Char and Soot in the Atmosphere and Their Ratio as an Indicator for Source Identification in Xi’an, China,” Atmospheric Chemistry and Physics 10, no. 2 (2010): 595–607. https://www.atmos-chem-phys.net/10/595/2010/.
  • B. L. Valle-Hernández, V. Mugica-Álvarez, E. Salinas-Talavera, O. Amador-Muñoz, M. A. Murillo-Tovar, R. Villalobos-Pietrini, and A. De Vizcaya-Ruíz, “Temporal Variation of Nitro-Polycyclic Aromatic Hydrocarbons in PM10 and PM2.5 Collected in Northern Mexico City,” Science of the Total Environment 408, no. 22 (2010): 5429–38.
  • USEPA. Compendium of Methods for the Determination of Inorganic Compounds in Ambient Air. U.S. Environmental Protection Agency: Cincinnati, OH. 1999;(June).
  • N. A. H. Janssen, A. Yang, M. Strak, M. Steenhof, B. Hellack, M. E. Gerlofs-Nijland, T. Kuhlbusch, F. Kelly, R. Harrison, B. Brunekreef, et al. “Oxidative Potential of Particulate Matter Collected at Sites with Different Source Characteristics,” Science of the Total Environment 472 (2014): 572–81. http://www.sciencedirect.com/science/article/pii/S0048969713014022.
  • Z. Wang, J. Lv, Y. Tan, M. Guo, Y. Gu, S. Xu, and Y. Zhou, “Temporospatial Variations and Spearman Correlation Analysis of Ozone Concentrations to Nitrogen Dioxide, Sulfur Dioxide, Particulate Matters and Carbon Monoxide in Ambient Air, China,” Atmospheric Pollution Research 10, no. 4 (2019): 1203–10. http://www.sciencedirect.com/science/article/pii/S130910421830477X.
  • Ward DE, Racke LF. Emissions measurements from vegetation fires: A comparative evaluation of methods and results. England: John Wiley & Sons; 1993.
  • L.-W. A. Chen, H. Moosmüller, W. P. Arnott, J. C. Chow, J. G. Watson, R. A. Susott, R. E. Babbitt, C. E. Wold, E. N. Lincoln, and W. M. Hao, “Emissions from Laboratory Combustion of Wildland Fuels:  Emission Factors and Source profiles,” Environmental Science & Technology 41, no. 12 (2007): 4317–25. https://doi.org/10.1021/es062364i.
  • T. W. Kirchstetter, and T. Novakov, “Controlled Generation of Black Carbon Particles from a Diffusion Flame and Applications in Evaluating Black Carbon Measurement Methods,” Atmospheric Environment 41, no. 9 (2007): 1874–88. http://www.sciencedirect.com/science/article/pii/S1352231006010843.
  • A. Fushimi, K. Saitoh, K. Hayashi, K. Ono, Y. Fujitani, A. M. Villalobos, B. R. Shelton, A. Takami, K. Tanabe, J. J. Schauer. “Chemical Characterization and Oxidative Potential of Particles Emitted from Open Burning of Cereal Straws and Rice Husk Under Flaming and Smoldering Conditions.” Atmospheric Environment 163 (2017):118–27. http://www.sciencedirect.com/science/article/pii/S1352231017303485.
  • J. J. Cao, S. C. Lee, K. F. Ho, S. C. Zou, K. Fung, Y. Li, J. G. Watson, and J. C. Chow, “Spatial and Seasonal Variations of Atmospheric Organic Carbon and Elemental Carbon in Pearl River Delta Region, China,” Atmospheric Environment 38, no. 27 (2004): 4447–56. http://www.sciencedirect.com/science/article/pii/S1352231004004923.
  • T. W. Kirchstetter, T. Novakov, and P. V. Hobbs, “Evidence That the Spectral Dependence of Light Absorption by Aerosols is Affected by Organic Carbon,” Journal of Geophysical Research: Atmospheres 109, no. D21 (2004): D21208. https://doi.org/10.1029/2004JD004999.
  • M. Schnaiter, C. Linke, O. Möhler, K.-H. Naumann, H. Saathoff, R. Wagner, U. Schurath, and B. Wehner, “Absorption Amplification of Black Carbon Internally Mixed with Secondary Organic Aerosol,” Journal of Geophysical Research 110, no. D19 (2005): D19204. https://doi.org/10.1029/2005JD006046.
  • N. Santiago-De la Rosa, V. Mugica-Álvarez, F. Cereceda-Balic, F. Guerrero, K. Yáñez, and M. Lapuerta, “Guerrero F, Yáñez K, Lapuerta M. Emission Factors from Different Burning Stages of Agriculture Wastes in Mexico,” Environmental Science and Pollution Research International 24, no. 31 (2017): 24297–310. https://doi.org/10.1007/s11356-017-0049-4.
  • C. A. Alves, E. D. Vicente, M. Evtyugina, A. Vicente, C. Pio, M. F. Amado, and P. L. Mahía, “Gaseous and Speciated Particulate Emissions from the Open Burning of Wastes from Tree Pruning,” Atmospheric Research 226 (2019): 110–21. http://www.sciencedirect.com/science/article/pii/S0169809519300274.
  • A. L. Holder, B. K. Gullett, S. P. Urbanski, R. Elleman, S. O'Neill, D. Tabor, W. Mitchell, and K. R. Baker, “Emissions from Prescribed Burning of Agricultural Fields in the Pacific Northwest,” Atmospheric Environment (Oxford, England : 1994) 166, no. Supplement C (2017): 22–33. http://www.sciencedirect.com/science/article/pii/S1352231017304247.
  • J. C. Chow, J. G. Watson, Z. Lu, D. H. Lowenthal, C. A. Frazier, P. A. Solomon, R. H. Thuillier, and K. Magliano, “Descriptive Analysis of PM2.5 and PM10 at Regionally Representative Locations during SJVAQS/AUSPEX,” A WMA International Specialty Conference on Regional Photochemical Measurements and Modeling 30, no. 12 (1996): 2079–112. http://www.sciencedirect.com/science/article/pii/1352231095004025.
  • B. J. Turpin, and J. J. Huntzicker, “Identification of Secondary Organic Aerosol Episodes and Quantitation of Primary and Secondary Organic Aerosol Concentrations during SCAQS,” Atmospheric Environment 29, no. 23 (1995): 3527–44. http://www.sciencedirect.com/science/article/pii/135223109400276Q.
  • P. Rajput, M. M. Sarin, R. Rengarajan, and D. Singh, “Atmospheric Polycyclic Aromatic Hydrocarbons (PAHs) from Post-Harvest Biomass Burning Emissions in the Indo-Gangetic Plain: Isomer Ratios and Temporal Trends,” Atmospheric Environment 45, no. 37 (2011): 6732–40.
  • B. M. Jenkins, A. D. Jones, S. Q. Turn, and R. B. Williams, “Particle Concentrations, Gas-Particle Partitioning, and Species Intercorrelations for Polycyclic Aromatic Hydrocarbons (PAH) Emitted during Biomass Burning,” Atmospheric Environment 30, no. 22 (1996): 3825–35.
  • H. Zhang, D. Hu, J. Chen, X. Ye, S. X. Wang, J. M. Hao, L. Wang, R. Zhang, and Z. An, “Particle Size Distribution and Polycyclic Aromatic Hydrocarbons Emissions from Agricultural Crop Residue Burning,” Environmental Science & Technology 45, no. 13 (2011): 5477–82.
  • G. Grimmer, J. Jacob, and K. W. Naujack, “Profile of the Polycyclic Aromatic Compounds from Crude Oils,” Fresenius' Zeitschrift Für Analytische Chemie 314, no. 1 (1983): 29–36. http://dx.doi.org/10.1007/BF00476507
  • N. R. Khalili, P. A. Scheff, and T. M. Holsen, “Pah Source Fingerprints for Coke Ovens, Diesel and Gasoline Engines, Highway Tunnels, and Wood Combustion Emissions,” Atmospheric Environment 29, no. 4 (1995): 533–42.
  • M. A. Sicre, J. C. Marty, A. Saliot, X. Aparicio, J. Grimalt, and J. Albaiges, “Aliphatic and Aromatic Hydrocarbons in Different Sized Aerosols over the Mediterranean Sea: Occurrence and Origin,” Atmospheric Environment (1967) 21, no. 10 (1987): 2247–59.
  • K. Ravindra, L. Bencs, E. Wauters, J. De Hoog, F. Deutsch, E. Roekens, N. Bleux, P. Berghmans, and R. Van Grieken, “Seasonal and Site-Specific Variation in Vapour and Aerosol Phase PAHs over Flanders (Belgium) and Their Relation with Anthropogenic Activities,” Atmospheric Environment 40, no. 4 (2006): 771–85.
  • P. K. Pandey, K. S. Patel, and J. Lenicek, “Polycyclic Aromatic Hydrocarbons: Need for Assessment of Health Risks in India? Study of an Urban-Industrial Location in India,” Environmental Monitoring and Assessment 59, no. 3 (1999): 287–319. https://doi.org/10.1023/A:1006169605672.
  • Z. Li, L. Chen, S. Liu, H. Ma, L. Wang, C. An, and R. Zhang, “Characterization of PAHs and PCBs in Fly Ashes of Eighteen Coal-Fired Power Plants,” Aerosol and Air Quality Research 16, no. 12 (2017): 3175–86.
  • Z. Li, L. Fan, L. Wang, H. Ma, Y. Hu, Y. Jiang, C. An, A. Liu, J. Han, and H. Jin, “PAH Profiles of Emitted Ashes from Indoor Biomass Burning across the Beijing-Tianjin-Hebei Region and Implications on Source Identification,” Aerosol and Air Quality Research 18, no. 3 (2018): 749–61.
  • C. K. Li, and R. M. Kamens, “The Use of Polycyclic Aromatic Hydrocarbons as Source Signatures in Receptor Modeling,” Atmospheric Environment Part A, General Topics 27, no. 4 (1993): 523–32.
  • E. Manoli, A. Kouras, and C. Samara, “Profile Analysis of Ambient and Source Emitted Particle-Bound Polycyclic Aromatic Hydrocarbons from Three Sites in Northern Greece,” Chemosphere 56, no. 9 (2004): 867–78.
  • B. L. Valle-Hernández, O. Amador-Muñoz, A. Jazcilevich-Diamant, A. E. Hernández-López, R. Villalobos-Pietrini, and R. González-Oropeza, “Polycyclic Aromatic Hydrocarbons in Particulate Matter Emitted by the Combustion of Diesel and Biodiesel,” Combustion Science and Technology 185, no. 3 (2013): 420–34.
  • D. P. Singh, R. Gadi, and T. K. Mandal, “Emissions of Polycyclic Aromatic Hydrocarbons in the Atmosphere: An Indian Perspective,” Human and Ecological Risk Assessment: An International Journal 16, no. 5 (2010): 1145–68.
  • W. F. Rogge, L. M. Hildemann, M. A. Mazurek, and G. R. Cass, “Sources of Fine Organic Aerosol. 2. Noncatalyst and Catalyst-Equipped Automobiles and Heavy-Duty Diesel Trucks,” Environmental Science & Technology, 27, no. 4 (1993): 636–51.
  • P. Rajput, M. M. Sarin, D. Sharma, and D. Singh, “Atmospheric Polycyclic Aromatic Hydrocarbons and Isomer Ratios as Tracers of Biomass Burning Emissions in Northern India,” Environmental Science and Pollution Research International 21, no. 8 (2014): 5724–9.
  • A. Yang, N. A. H. Janssen, B. Brunekreef, F. R. Cassee, G. Hoek, and U. Gehring, “Children’s Respiratory Health and Oxidative Potential of PM2.5: The PIAMA Birth Cohort Study,” Occupational and Environmental Medicine 73, no. 3 (2016): 154–60. http://oem.bmj.com/content/73/3/154.abstract.
  • M. J. Nieuwenhuijsen, J. E. Gómez-Perales, and R. N. Colvile, “Levels of Particulate Air Pollution, Its Elemental Composition, Determinants and Health Effects in Metro Systems,” Atmospheric Environment 41, no. 37 (2007): 7995–8006. http://www.sciencedirect.com/science/article/pii/S135223100700698X.
  • K. M. Shakya, and R. J. Griffin, “Secondary Organic Aerosol from Photooxidation of Polycyclic Aromatic Hydrocarbons,” Environmental Science & Technology 44, no. 21 (2010): 8134–9.
  • L. Ntziachristos, J. R. Froines, A. K. Cho, and C. Sioutas, “Relationship between Redox Activity and Chemical Speciation of Size-Fractionated Particulate Matter,” Particle and Fibre Toxicology 4, no. 1 (2007): 5–12.
  • W. Y. Tuet, F. Liu, N. de Oliveira Alves, S. Fok, P. Artaxo, P. Vasconcellos, J. A. Champion, and N. L. Ng, “Chemical Oxidative Potential and Cellular Oxidative Stress from Open Biomass Burning Aerosol,” Environmental Science & Technology Letters 6, no. 3 (2019): 126–32. https://doi.org/10.1021/acs.estlett.9b00060.
  • J. G. Charrier, and C. Anastasio, “On Dithiothreitol (DTT) as a Measure of Oxidative Potential for Ambient Particles: evidence for the Importance of Soluble Transition Metals,”Atmospheric Chemistry and Physics 12, no. 19 (2012): 9321–33. https://www.atmos-chem-phys.net/12/9321/2012/.
  • F. Shirmohammadi, S. Hasheminassab, D. Wang, J. J. Schauer, M. M. Shafer, R. J. Delfino, and C. Sioutas, “The Relative Importance of Tailpipe and Non-Tailpipe Emissions on the Oxidative Potential of Ambient Particles in Los Angeles, CA,”Faraday Discussions 189 (2016): 361–80. http://dx.doi.org/10.1039/C5FD00166H.
  • A. L. Chang-Graham, L. T. M. Profeta, T. J. Johnson, R. J. Yokelson, A. Laskin, and J. Laskin, “Case Study of Water-Soluble Metal Containing Organic Constituents of Biomass Burning Aerosol,” Environmental Science & Technology 45, no. 4 (2011): 1257–63. https://doi.org/10.1021/es103010j.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.