629
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Azole-Based Antibacterial Agents: A Review on Multistep Synthesis Strategies and Biology

, &
Pages 5474-5495 | Received 10 Aug 2020, Accepted 25 May 2021, Published online: 22 Jul 2021

References

  • Z. A. Bhavsar, P. T. Acharya, D. J. Jethava, and H. D. Patel, “Recent Advances in Development of Anthelmintic Agents: Synthesis and Biological Screening,” Synthetic Communications 50, no. 7 (2020): 917–46.
  • M. Wang, K. P. Rakesh, J. Leng, W.-Y. Fang, L. Ravindar, D. Channe Gowda, and H.-L. Qin, “Amino Acids/Peptides Conjugated Heterocycles: A Tool for the Recent Development of Novel Therapeutic Agents,” Bioorganic Chemistry 76, no. 2 (2018): 113–29.
  • A. A. Shanty, J. E. Philip, E. J. Sneha, M. R. Prathapachandra Kurup, S. Balachandran, and P. V. Mohanan, “Synthesis, Characterization and Biological Studies of Schiff Bases Derived from Heterocyclic Moiety,” Bioorganic Chemistry 70 (2017): 67–73.
  • F. G. Medina, J. G. Marrero, M. Macías-Alonso, M. C. González, I. Córdova-Guerrero, A. G. Teissier García, and S. Osegueda-Robles, “Coumarin Heterocyclic Derivatives: Chemical Synthesis and Biological Activity,” Natural Product Reports 32, no. 10 (2015): 1472–507.
  • P. Saraswat, G. Jeyabalan, M. Z. Hassan, M. U. Rahman, and N. K. Nyola, “ChemInform Abstract: Review of Synthesis and Various Biological Activities of Spiro Heterocyclic Compounds Comprising Oxindole and Pyrrolidine Moieties,” ChemInform 47, no. 51 (2016): 1643–64.
  • H. P. Ebrahimi, J. S. Hadi, A. A. Almayah, Z. Bolandnazar, A. G. Swadi, and A. Ebrahimi, “Metal-Based Biologically Active Azoles and β-Lactams Derived from Sulfa Drugs,” Bioorganic & Medicinal Chemistry 24, no. 5 (2016): 1121–31.
  • M. Rafiq, M. Saleem, F. Jabeen, M. Hanif, S.-Y. Seo, S. K. Kang, and K. H. Lee, “Facile Synthesis, Biological Evaluation and Molecular Docking Studies of Novel Substituted Azole Derivatives,” Journal of Molecular Structure 1138, no. 4 (2017): 177–91.
  • T. Ali, S. Abdel-Aziz, S. El-Edfawy, E.-H. Mohamed, and S. Abdel-Kariem, “Cleavage of Diethyl Chromonyl α-Aminophosphonate with Nitrogen and Carbon Nucleophiles: A Synthetic Approach and Biological Evaluations of a Series of Novel Azoles, Azines and Azepines Containing α-Aminophosphonate and Phosphonate Groups,” Synthetic Communications 44, no. 24 (2014): 3610–29.
  • M. Thwin, B. Mahmoudi, O. A. Ivaschuk, and Q. A. Yousif, “An Efficient and Recyclable Nanocatalyst for the Green and Rapid Synthesis of Biologically Active Polysubstituted Pyrroles and 1,2,4,5-Tetrasubstituted Imidazole Derivatives,” RSC Advances 9, no. 28 (2019): 15966–75.
  • S. S. Gholap, “Pyrrole: An Emerging Scaffold for Construction of Valuable Therapeutic Agents,” European Journal of Medicinal Chemistry 110, no. 2 (2016): 13–31.
  • K. Grychowska, B. Kubica, M. Drop, E. Colacino, X. Bantreil, M. Pawłowski, J. Martinez, G. Subra, P. Zajdel, and F. Lamaty, “Application of the Ring-Closing Metathesis to the Formation of 2-Aryl-1H-Pyrrole-3-Carboxylates as Building Blocks for Biologically Active Compounds,” Tetrahedron 72, no. 47 (2016): 7462–9.
  • M. Chan, A. Ahmadi, S. Yao, F. Sato-Kaneko, K. Messer, M. Pu, B. Nguyen, T. Hayashi, M. Corr, D. A. Carson, et al. “Identification of Biologically Active Pyrimido[5,4-b]Indoles That Prolong NF-κB Activation without Intrinsic Activity,” ACS Combinatorial Science 19, no. 8 (2017): 533–43.
  • M. S. Santos, D. C. Fernandes, M. T. Rodrigues Jr., T. Regiani, A. D. Andricopulo, A. L. T. G. Ruiz, D. B. Vendramini-Costa, J. E. de Carvalho, M. N. Eberlin, and F. Coelho, “Diastereoselective Synthesis of Biologically Active Cyclopenta[b]Indoles,” The Journal of Organic Chemistry 81, no. 15 (2016): 6626–39.
  • X.-F. Shang, S. L. Morris-Natschke, Y.-Q. Liu, X. Guo, X.-S. Xu, M. Goto, J.-C. Li, G.-Z. Yang, and K.-H. Lee, “Biologically Active Quinoline and Quinazoline Alkaloids Part I,” Medicinal Research Reviews 38, no. 3 (2018): 775–828.
  • X.-F. Shang, S. L. Morris-Natschke, G.-Z. Yang, Y.-Q. Liu, X. Guo, X.-S. Xu, M. Goto, J.-C. Li, J.-Y. Zhang, and K.-H. Lee, “Biologically Active Quinoline and Quinazoline Alkaloids Part II,” Medicinal Research Reviews 38, no. 5 (2018): 1614–60.
  • M. E. M. Zayed and P. Kumar, “Spectroscopic Physicochemical and Photophysical Investigation of Biologically Active 2-Oxo-Quinoline-3-Carbonitrile Derivative,” Journal of Fluorescence 27, no. 3 (2017): 853–60.
  • X.-M. Chu, C. Wang, W. Liu, L.-L. Liang, K.-K. Gong, C.-Y. Zhao, and K.-L. Sun, “Quinoline and Quinolone Dimers and Their Biological Activities: An Overview,” European Journal of Medicinal Chemistry 161 (2019): 101–17.
  • P. R. Murumkar and R. B. Ghuge, Vicinal Diaryl Substituted Heterocycles (Elsevier, 2018), 277–303.
  • D. Allen, D. Wilson, R. Drew, and J. Perfect, “Azole Antifungals: 35 Years of Invasive Fungal Infection Management,” Expert Review of anti-Infective Therapy 13, no. 6 (2015): 787–98.
  • N. Mast, W. Zheng, C. D. Stout, and I. A. Pikuleva, “Antifungal Azoles: Structural Insights into Undesired Tight Binding to Cholesterol-Metabolizing CYP46A1,” Molecular Pharmacology 84, no. 1 (2013): 86–94.
  • J. A. Sattigeri, S. Sethi, and M. Salman, “Synthesis of 2[(1R,2R)-2-(2,4-Difluorophenyl)-2-Hydroxy-1-Methyl-3-(1H-1,2,4-Triazol-yl)Propyl]-4-[4-Tetrafluoropropoxy)Phenyl]-3-(2H,4H)-1,2,4-Triazol-3-Thione—A Novel and Potent Azole Antifungal Agent,” Synthetic Communications 40, no. 6 (2010): 833–8.
  • D. V. Sowmya, S. S. Basha, P. U. M. Devi, Y. Lavanyalatha, A. Padmaja, and V. Padmavathi, “Synthesis, Antimicrobial, and Anti-Inflammatory Activities of Acetamido Pyrrolyl Azoles,” Medicinal Chemistry Research 26, no. 5 (2017): 1010–21.
  • A. Toma, C. Mogoşan, L. Vlase, D. Leonte, and V. Zaharia, “Synthesis, Characterization and Evaluation of the Anti-Inflammatory Activity of Thiazolo[3,2-b][1,2,4]Triazole Derivatives Bearing Pyridin-3/4-yl Moiety,” Medicinal Chemistry Research 26, no. 10 (2017): 2602–13.
  • A. A. Bekhit, M. N. Saudi, A. M. M. Hassan, S. M. Fahmy, T. M. Ibrahim, D. Ghareeb, A. M. El-Seidy, S. N. Nasralla, and A. E.-D A. Bekhit, “Synthesis, In Silico Experiments and Biological Evaluation of 1,3,4-Trisubstituted Pyrazole Derivatives as Antimalarial Agents,” European Journal of Medicinal Chemistry 163 (2019): 353–66.
  • C. Gao, L. Chang, Z. Xu, X.-F. Yan, C. Ding, F. Zhao, X. Wu, and L.-S. Feng, “Recent Advances of Tetrazole Derivatives as Potential Anti-Tubercular and Anti-Malarial Agents,” European Journal of Medicinal Chemistry 163 (2019): 404–12.
  • P. M. Njogu, J. Okombo, and K. Chibale, Design of Hybrid Molecules for Drug Development (Elsevier, 2017), 83–135.
  • O. E. Fandiño, L. Reviglio, Y. G. Linck, G. A. Monti, M. M. Marcos Valdez, S. N. Faudone, M. R. Caira, and N. R. Sperandeo, “Novel Cocrystals and Eutectics of the Antiprotozoal Tinidazole: Mechanochemical Synthesis, Cocrystallization, and Characterization,” Crystal Growth and Design 20, no. 5 (2020): 2930–42.
  • A. Bistrović, L. Krstulović, I. Stolić, D. Drenjančević, J. Talapko, M. C. Taylor, J. M. Kelly, M. Bajić, and S. Raić-Malić, “Synthesis, Anti-Bacterial and Anti-Protozoal Activities of Amidinobenzimidazole Derivatives and Their Interactions with DNA and RNA,” Journal of Enzyme Inhibition and Medicinal Chemistry 33, no. 1 (2018): 1323–34.
  • N. C. Desai, A. Trivedi, H. Somani, K. A. Jadeja, D. Vaja, L. Nawale, V. M. Khedkar, and D. Sarkar, “Synthesis, Biological Evaluation, and Molecular Docking Study of Pyridine Clubbed 1,3,4-Oxadiazoles as Potential Antituberculars,” Synthetic Communications 48, no. 5 (2018): 524–40.
  • S. Gholap, M. Tambe, L. Nawale, D. Sarkar, J. Sangshetti, and M. Damale, “Design, Synthesis, and Pharmacological Evaluation of Fluorinated Azoles as Anti-Tubercular Agents,” Archiv der Pharmazie 351, no. 2 (2018): 1700294.
  • V. M. Patel, N. B. Patel, M. J. Chan-Bacab, and G. Rivera, “N-Mannich Bases of Benzimidazole as a Potent Antitubercular and Antiprotozoal Agents: Their Synthesis and Computational Studies,” Synthetic Communications 50, no. 6 (2020): 858–78.
  • K. M. Dawood, T. M. A. Eldebss, H. S. A. El-Zahabi, and M. H. Yousef, “Synthesis and Antiviral Activity of Some New Bis-1,3-Thiazole Derivatives,” European Journal of Medicinal Chemistry 102 (2015): 266–76.
  • E. Rhoden, W. A. Nix, W. C. Weldon, and R. Selvarangan, “Antifungal Azoles Itraconazole and Posaconazole Exhibit Potent In Vitro Antiviral Activity against Clinical Isolates of Parechovirus A3 (Picornaviridae),” Antiviral Research 149 (2018): 75–7.
  • A. Messore, A. Corona, V. N. Madia, F. Saccoliti, V. Tudino, A. De Leo, L. Scipione, D. De Vita, G. Amendola, S. Di Maro, et al. “Pyrrolyl Pyrazoles as Non-Diketo Acid Inhibitors of the HIV-1 Ribonuclease H Function of Reverse Transcriptase,” ACS Medicinal Chemistry Letters 11, no. 5 (2020): 798–805.
  • B. Vergani, G. Sandrone, M. Marchini, C. Ripamonti, E. Cellupica, E. Galbiati, G. Caprini, G. Pavich, G. Porro, I. Rocchio, et al. “Novel Benzohydroxamate-Based Potent and Selective Histone Deacetylase 6 (HDAC6) Inhibitors Bearing a Pentaheterocyclic Scaffold: Design, Synthesis, and Biological Evaluation,” Journal of Medicinal Chemistry 62, no. 23 (2019): 10711–39.
  • A. A. Al-Badr and M. M. Alodhaib, Profiles of Drug Substances, Excipients and Related Methodology, 1st ed. (Academic Press, 2016), 323–77.
  • X. Zhao and X. Hu, “Dosing of Zoledronic Acid with Its anti-Tumor Effects in Breast Cancer,” Journal of Bone Oncology 4, no. 3 (2015): 98–101.
  • L. Shivakumar and J. E. Lancet, “The Role of Farnesyl Transferase Inhibitors in the Treatment of Patients with Leukemia and Myelodysplastic Syndrome,” Clinical Leukemia 1, no. 2 (2006): 80–3.
  • C. Belizna, P. L. Meroni, Y. Shoenfeld, K. Devreese, J. Alijotas-Reig, E. Esteve-Valverde, C. Chighizola, F. Pregnolato, H. Cohen, C. Fassot, et al. “In Utero Exposure to Azathioprine in Autoimmune Disease. Where Do We Stand?” Autoimmunity Reviews 19, no. 9 (2020): 102525.
  • J. A. Maertens, “History of the Development of Azole Derivatives,” Clinical Microbiology and Infection 10 (2004): 1–10.
  • R. A. Fromtling, “Overview of Medically Important Antifungal Azole Derivatives,” Clinical Microbiology Reviews 1, no. 2 (1988): 187–217.
  • F. C. Odds, C. E. Webster, and A. B. Abbott, “Antifungal Relative Inhibition Factors: Bay l-9139, Bifonazole, Butoconazole, Isoconazole, Itraconazole (R 51211), Oxiconazole, Ro 14-4767/002, Sulconazole, Terconazole and Vibunazole (BAY n-7133) Compared In Vitro with Nine Established Antifungal Agents,” The Journal of Antimicrobial Chemotherapy 14, no. 2 (1984): 105–14.
  • G. M. Vidyasagar, Recent Trends in Antifungal Agents and Antifungal Therapy (India: Springer, 2016), 123–47.
  • P. Marichal and H. Vanden Bossche, “Mechanisms of Resistance to Azole Antifungals,” Acta Biochimica Polonica 42, no. 4 (1995): 509–16.
  • Z. A. Kanafani and J. R. Perfect, “Resistance to Antifungal Agents: Mechanisms and Clinical Impact,” Clinical Infectious Diseases 46, no. 1 (2008): 120–8.
  • D. Sanglard, K. Kuchler, F. Ischer, J. L. Pagani, M. Monod, and J. Bille, “Mechanisms of Resistance to Azole Antifungal Agents in Candida albicans Isolates from AIDS Patients Involve Specific Multidrug Transporters,” Antimicrobial Agents and Chemotherapy 39, no. 11 (1995): 2378–86.
  • A. Dudakova, B. Spiess, M. Tangwattanachuleeporn, C. Sasse, D. Buchheidt, M. Weig, U. Groß, and O. Bader, “Molecular Tools for the Detection and Deduction of Azole Antifungal Drug Resistance Phenotypes in Aspergillus Species,” Clinical Microbiology Reviews 30, no. 4 (2017): 1065–91.
  • M. M. Canuto and F. G. Rodero, “Antifungal Drug Resistance to Azoles and Polyenes,” The Lancet Infectious Diseases 2, no. 9 (2002): 550–63.
  • L. L. Benitez and P. L. Carver, “Adverse Effects Associated with Long-Term Administration of Azole Antifungal Agents,” Drugs 79, no. 8 (2019): 833–53.
  • A. Das and B. K. Banik, Green Approaches in Medicinal Chemistry for Sustainable Drug Design, 1st ed. (Elsevier, 2020), 921–64.
  • R. M. Shingare, Y. S. Patil, S. Gadekar, J. N. Sangshetti, and B. R. Madje, “Synthesis and Antibacterial Screening of Novel 1,3,5-Triaryl-4,5-Dihydro-1H-Pyrazole Derivatives,” Moroccan Journal of Chemistry 5, no. 1 (2017): 177–85.
  • M. Rani, S. Sharma, R. Chauhan, S. Sharma, and J. Dwivedi, “Synthesis, Characterization and Antibacterial Evaluation of Some Azole Derivatives,” Indian Journal of Pharmaceutical Education and Research 51, no. 4 (2017): 650–5.
  • J. Kang, V. K. R. Tangadanchu, L. Gopala, W.-W. Gao, Y. Cheng, H.-B. Liu, R.-X. Geng, S. Li, and C.-H. Zhou, “Novel Potentially Antibacterial Naphthalimide-Derived Metronidazoles: Design, Synthesis, Biological Evaluation and Supramolecular Interactions with DNA, Human Serum Albumin and Topoisomerase II,” Chinese Chemical Letters 28, no. 7 (2017): 1369–74.
  • Z. Xu, S. Zhang, L.-S. Feng, X.-N. Li, G.-C. Huang, Y. Chai, Z.-S. Lv, H.-Y. Guo, and M.-L. Liu, “Synthesis and In Vitro Antimycobacterial and Antibacterial Activity of 8-OMe Ciprofloxacin-Hydrozone/Azole Hybrids,” Molecules 22, no. 7 (2017): 1171.
  • P. Khedar, K. Pericherla, R. P. Singh, P. N. Jha, and A. Kumar, “Click Chemistry Inspired Synthesis of Piperazine-Triazole Derivatives and Evaluation of Their Antimicrobial Activities,” Medicinal Chemistry Research 24, no. 7 (2015): 3117–26.
  • O. A. Phillips, L. H. Sharaf, R. D’Silva, E. E. Udo, and L. Benov, “Evaluation of the Monoamine Oxidases Inhibitory Activity of a Small Series of 5-(Azole)Methyl Oxazolidinones,” European Journal of Pharmaceutical Sciences 71 (2015): 56–61.
  • L. Zhang, K. V. Kumar, S. Rasheed, S.-L. Zhang, R.-X. Geng, and C.-H. Zhou, “Design, Synthesis, and Antibacterial Evaluation of Novel Azolylthioether Quinolones as MRSA DNA Intercalators,” MedChemComm 6, no. 7 (2015): 1303–10.
  • G. M. Reddy, J. R. Garcia, V. H. Reddy, A. M. de Andrade, A. Camilo Jr., R. A. Pontes Ribeiro, and S. R. de Lazaro, “Synthesis, Antimicrobial Activity and Advances in Structure-Activity Relationships (SARs) of Novel Tri-Substituted Thiazole Derivatives,” European Journal of Medicinal Chemistry 123 (2016): 508–13.
  • A. M. Abo‐Bakr and H. E. Hashem, “New 1,3,4‐Thiadiazole Derivatives: Synthesis, Characterization, and Antimicrobial Activity,” Journal of Heterocyclic Chemistry 56, no. 3 (2019): 1038–47.
  • K. Anusevičius, I. Jonuškienė, B. Sapijanskaitė, K. Kantminienė, and V. Mickevičius, “Synthesis and Antibacterial Activity of New N-Substituted 7-Amino-4-Methyl-2H-Chromen-2-Ones,” Research on Chemical Intermediates 42, no. 9 (2016): 6975–90.
  • L. Amarouche, F. T. Brahimi, and A. A. Othman, “Synthesis of Azole Derivatives of l-Proline and Their Antibacterial Activity,” Journal of Chemical and Pharmaceutical Research 8, no. 4 (2016): 896–900.
  • S. Oniga, M. Duma, O. Oniga, B. Tiperciuc, A. Pirnau, C. Araniciu, and M. Palage, “Synthesis of Some New 4-Methyl-2-(4-Pyridyl)-Thiazole-5-yl-Azoles as Potential Antimicrobial Agents,” Farmacia 63 (2015): 171–8.
  • R. Tejero, D. López, F. López-Fabal, J. L. Gómez-Garcés, and M. Fernández-García, “High Efficiency Antimicrobial Thiazolium and Triazolium Side-Chain Polymethacrylates Obtained by Controlled Alkylation of the Corresponding Azole Derivatives,” Biomacromolecules 16, no. 6 (2015): 1844–54.
  • M. M. Sekhar, G. Sravya, V. Padmavathi, A. Padmaja, R. Usha, and P. Supraja, “Synthesis and Antimicrobial Activity of 1,3-/1,4-Phenylene Linked Bis(Azoles),” Research on Chemical Intermediates 42, no. 12 (2016): 7947–62.
  • S. M. Gomha, T. A. Farghaly, Y. N. Mabkhot, M. E. M. Zayed, and A. M. G. Mohamed, “Microwave-Assisted Synthesis of Some Novel Azoles and Azolopyrimidines as Antimicrobial Agents,” Molecules 22, no. 3 (2017): 346.
  • M. Madhu Sekhar, U. Nagarjuna, V. Padmavathi, A. Padmaja, N. V. Reddy, and T. Vijaya, “Synthesis and Antimicrobial Activity of Pyrimidinyl 1,3,4-Oxadiazoles, 1,3,4-Thiadiazoles and 1,2,4-Triazoles,” European Journal of Medicinal Chemistry 145 (2018): 1–10.
  • M. Mentese, N. Demirbas, A. Mermer, S. Demirci, A. Demirbas, and F. A. Ayaz, “Novel Azole-Functionalited Fluoroquinolone Hybrids: Design, Conventional and Microwave Irradiated Synthesis, Evaluation as Antibacterial and Antioxidant Agents,” Letters in Drug Design & Discovery 15, no. 1 (2018): 46–64.
  • Y. Zhang, V. K. R. Tangadanchu, Y. Cheng, R.-G. Yang, J.-M. Lin, and C.-H. Zhou, “Potential Antimicrobial Isopropanol-Conjugated Carbazole Azoles as Dual Targeting Inhibitors of Enterococcus faecalis,” ACS Medicinal Chemistry Letters 9, no. 3 (2018): 244–9.
  • Z. Ghasemi, S. Azizi, R. Salehi, and H. S. Kafil, “Synthesis of Azo Dyes Possessing N-Heterocycles and Evaluation of Their Anticancer and Antibacterial Properties,” Monatshefte Für Chemie - Chemical Monthly 149, no. 1 (2018): 149–57.
  • G. S. Kumar, G. Santhosh Kumar, Y. Poornachandra, K. Ratnakar Reddy, C. Ganesh Kumar, and B. Narsaiah, “Synthesis of Novel Triazolothione, Thiadiazole, Triazole-Functionalized Furo/Thieno[2,3-b]Pyridine Derivatives and Their Antimicrobial Activity,” Synthetic Communications 47, no. 20 (2017): 1864–73.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.