92
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Mono-Ammonium Phosphate Fertilizer Modified by Cadmium: An Efficient and Recyclable Catalyst for 2,3-Dihydroquinazolin-4(1H)-One Derivatives Synthesis

, , , , &
Pages 6199-6214 | Received 31 May 2020, Accepted 30 Aug 2021, Published online: 15 Sep 2021

References

  • O. V. Kharissova, B. I. Kharisov, C. M. Oliva González, Y. P. Méndez, and I. López, “Greener Synthesis of Chemical Compounds and Materials,” Royal Society Open Science 6, no. 11 (2019): 191378.
  • S. S. Makone and S. N. Niwadange, " “Green Chemistry Alternatives for Sustainable Development in Organic Synthesis,” Green Chemistry 3 (2016): 113–5.
  • L. Weber, “Multi-Component Reactions and Evolutionary Chemistry,” Drug Discovery Today 7, no. 2 (2002): 143–7.
  • A. Dömling, “Recent Developments in Isocyanide Based Multicomponent Reactions in Applied Chemistry,” Chemical Reviews 106, no. 1 (2006): 17–89.
  • M. N. Chen, L. P. Mo, Z. S. Cui, and Z. H. Zhang, “Magnetic Nanocatalysts: Synthesis and Application in Multicomponent Reactions,” Current Opinion in Green and Sustainable Chemistry 15, no. 15 (2019): 27–37.
  • Helen L. Birch, George M. Buckley, Natasha Davies, Hazel J. Dyke, Elizabeth J. Frost, Philip J. Gilbert, Duncan R. Hannah, Alan F. Haughan, Michael J. Madigan, Trevor Morgan, et al. “Novel 7-Methoxy-6-Oxazol-5-yl-2,3-Dihydro-1H-Quinazolin-4-Ones as IMPDH Inhibitors,” Bioorganic & Medicinal Chemistry Letters 15, no. 23 (2005): 5335–9.
  • E. Cohen, B. Klarberg, and J. R. Vaughan, “Quinazolinone Sulfonamides as Diuretic Agents,” Journal of the American Chemical Society 81, no. 20 (1959): 5508–9.
  • M. R. Yadav, S. T. Shirude, A. Parmar, R. Balaraman, and R. Giridhar, “Synthesis and Anti-Inflammatory Activity of 2,3-Diaryl-4(3H)-Quinazolinones,” Chemistry of Heterocyclic Compounds 42, no. 8 (2006): 1038–45.
  • M. Carlo, B. Anna, S. Isabella, S. Maria, R. Andrea, and F. Rosella, “Synthesis and Evaluation as NOP Ligands of Some Spiro[Piperidine-4,2′(1′H)-Quinazolin]-4′(3′H)-Ones 3 and Spiro[Piperidine-4,5′(6′H)-[1,2,4]Triazolo[1,5-c]Quinazolines],” Chemical and Pharmaceutical Bulletin 54, no. 5 (2006): 611–22.
  • G. Bonola, R. P. Da, M. J. Magistretti, E. Massarani, and I. Setnikar, “1-Aminoacyl-2,3-Dihydro-4(1H)-Quinazolinone Derivatives with Choleretic and Antifibrillatory Activity,” Journal of Medicinal Chemistry 11, no. 6 (1968): 1136–9.
  • H. J. Hess, T. H. Cronin, and A. Scriabine, “Antihypertensive 2-Amino-4(3H)-Quinazolinones,” Journal of Medicinal Chemistry 11, no. 1 (1968): 130–6.
  • P. Yerram, R. Chowrasia, S. Seeka, and S. J. Tangenda, “Polyethylene Glycol (PEG-400) as a Medium for Novel and Efficient Synthesis of 2-Phenyl-2,3-Dihydroquinazolin-4(1H)-One Derivatives,” European Journal of Chemistry 4, no. 4 (2013): 462–6.
  • M. Abdollahi-Alibeik and E. Shabani, “Nanocrystalline Sulfated Zirconia as an Efficient Solid Acid Catalyst for the Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones,” Journal of the Iranian Chemical Society 11, no. 2 (2014): 351–9.
  • J. Wu, X. Du, J. Ma, Y. Zhang, Q. Shi, L. Luo, B. Song, S. Yang, and D. Hu, “Preparation of 2,3-Dihydroquinazolin-4(1H)-One Derivatives in Aqueous Media with β-Cyclodextrin-SO3H as a Recyclable Catalyst,” Green Chemistry 16, no. 6 (2014): 3210–7.
  • A. Ghorbani-Choghamarani and G. Azadi, “Synthesis, Characterization, and Application of Fe3O4-SA-PPCA as a Novel Nanomagnetic Reusable Catalyst for the Efficient Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones and Polyhydroquinolines,” RSC Advances 5, no. 13 (2015): 9752–8.
  • M. Rahman, I. Ling, N. Abdullah, R. Hashim, and A. Hajra, “Organocatalysis by p-Sulfonic Acid Calix[4]Arene: A Convenient and Efficient Route to 2,3-Dihydroquinazolin-4(1H)-Ones in Water,” RSC Advances 5, no. 10 (2015): 7755–60.
  • S. Tarannum, N. Ahmed, and Z. N. Siddiqui, “LaCl3/nano-SiO2: A Novel Nanocatalyst for Efficient Synthesis of Functionalized 2,3-Dihydroquinazolinones,” Catalysis Communications 66 (2015): 60–6.
  • N. Razavi and B. Akhlaghinia, “Hydroxyapatite Nanoparticles (HAP NPs): A Green and Efficient Heterogeneous Catalyst for Three-Component One-Pot Synthesis of 2,3-Dihydroquinazolin-4(1H)-One Derivatives in Aqueous Media,” New Journal of Chemistry 40, no. 1 (2016): 447–57.
  • S. Zhaleh, N. Hazeri, and M. T. Maghsoodlou, “Green Protocol for Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones: Lactic Acid as Catalyst Under Solvent-Free Condition,” Research on Chemical Intermediates 42, no. 7 (2016): 6381–90.
  • F. Havasi, A. Ghorbani-Choghamarani, and F. Nikpour, “Synthesis and Characterization of Nickel Complex Anchored onto MCM-41 as a Novel and Reusable Nanocatalyst for the Efficient Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones,” Microporous and Mesoporous Materials 224 (2016): 26–35.
  • M. Kancherla and V. Badathala, “Aluminium Exchanged Indian Clay as an Efficient Reusable Green Catalyst for Synthesis of 2,3-Dihydroquinazolin-4(1H)-One Derivatives,” Journal of Porous Materials 24, no. 5 (2017): 1187–96.
  • B. Dam, R. A. Patil, Y.-R. Ma, and A. K. Pal, “Preparation, Characterization and Catalytic Application of nano-Fe3O4 -DOPA-SnO 2 Having High TON and TOF for Non-Toxic and Sustainable Synthesis of Dihydroquinazolinone Derivatives,” New Journal of Chemistry 41, no. 14 (2017): 6553–63.
  • B. D. Rupnar, T. R. Kachave, P. D. Jawale, S. U. Shisodia, and R. P. Pawar, “Green and Efficient Synthesis of 2, 3-Dihydroquinazolin-4(1H)-Ones in Aqueous Medium Using ZnFe2O4 Catalyst under Microwave Irradiation,” Journal of the Iranian Chemical Society 14, no. 9 (2017): 1853–8.
  • S. Ayyanar, P. K. Vijaya, M. Mariyappan, V. Ashokkumar, V. Sadhasivam, S. Balakrishnan, C. Chinnadurai, and S. Murugesan, “Enantioselective Synthesis of Dihydroquinazolinone Derivatives Catalyzed by a Chiral Organocatalyst,” New Journal of Chemistry 41, no. 16 (2017): 7980–6.
  • M. S. Raghu, K. N. N. Prasad, B. K. Jayanna, C. B. Pradeep Kumar, K. Yogesh Kumar, and M. K. Prashanth, “Efficient Synthesis of RuO2 Nanoparticle with Excellent Activity for One-Pot Synthesis of 2,3-Disubstituted Quinazolin-4(1H)-Ones: Frailty and Life Satisfaction in Elderly,” Vietnam Journal of Chemistry 57, no. 5 (2019): 585–94.
  • H. Ghafuri, N. Goodarzi, A. Rashidizadeh, and M. A. Douzandegi Fard, “ompg-C3N4/SO3H: An Efficient and Recyclable Organocatalyst for the Facile Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones,” Research on Chemical Intermediates 45, no. 10 (2019): 5027–43.
  • I. Bahammou, A. Esaady, S. Boukhris, R. Ghailane, N. Habbadi, A. Hassikou, and A. Souizi, “Direct Use of Mineral Fertilizers MAP, DAP, and TSP as Heterogeneous Catalysts in Organic Reactions,” Mediterranean Journal of Chemistry 5, no. 6 (2016): 615–23.
  • S. Sibous, T. Ghailane, S. Houda, R. Ghailane, S. Boukhris, and A. Souizi, “Green and Efficient Method for the Synthesis of 1,5-Benzodiazipines Using Phosphate Fertilizers as Catalysts under Free Solvent,” Mediterranean Journal of Chemistry 6, no. 3 (2017): 53–9.
  • S. Sibous, S. Boukhris, R. Ghailane, N. Habbadi, A. Hassikou, and A. Souizi, “Easy Synthesis of 3,4-Dihydropyrimidin-2-(1H)-Ones Using Phosphate Fertilizers MAP, DAP and TSP as Efficient Catalysts,” Journal of the Turkish Chemical Society, Section A: Chemistry 4, no. 2 (2017): 1–8.
  • S. Sibous, S. Boukhris, R. Ghailane, N. H. A. Hassikou, and A. Souizi, “Green and Efficient Phosphate Fertilizers DAP, MAP and TSP as Catalysts for the Synthesis of 1H-Pyrazolo[1,2-b]Phthalazine-5,10-Diones under Solvent-Free Condition,” Journal of the Tunisian Chemical Society 19 (2017): 89–93.
  • S. Chehab, Y. Merroun, T. Ghailane, R. Ghailane, S. Boukhris, and A. Souizi, “A Green and Efficient Method for the Synthesis of 3,4-Dihydropyrano[c]Chromene Using Phosphate Fertilizers (MAP, DAP and TSP) as Heterogeneous Catalysts,” Journal of the Turkish Chemical Society, Section A: Chemistry 5 (2018): 355–70.
  • Y. Merroun, S. Chehab, T. Ghailane, S. Boukhris, R. Ghailane, N. Habbadi, A. Hassikou, B. Lakhrissi, and A. Souizi, “An Effective Method to Synthesize 2,3-Dihydroquinazolin-4(1H)-One Using Phosphate Fertilizers (MAP, DAP and TSP) as Green Heterogeneous Catalysts,” Journal of the Turkish Chemical Society, Section A: Chemistry 5, no. 1 (2018): 303–16.
  • S. Chehab, Y. Merroun, T. Ghailane, R. Ghailane, S. Boukhris, M. Akhazzane, A. Kerbal, and A. Souizi, “Synthesis of 9-Arylhexahydroacridine-1,8-Diones Using Phosphate Fertilizers as Heterogeneous Catalysts,” Russian Journal of Organic Chemistry 55, no. 9 (2019): 1380–6.
  • O. Zimou, B. Malek, A. Elhallaoui, T. Ghailane, R. Ghailane, S. Boukhris, N. Habbadi, A. Hassikou, and A. Souizi, “Valorization of the Phosphate Fertilizers Catalytic Activity in 1-(Benzothiazolylamino)Methyl-2-Naphthol Derivatives Synthesis,” Bulletin of Chemical Reaction Engineering & Catalysis 14, no. 2 (2019): 238.
  • B. Malek, I. Bahammou, O. Zimou, A. El. Hallaoui, R. Ghailane, S. Boukhris, and A. Souizi, “Eco-Friendly Synthesis of Quinoxaline Derivatives Using Mineral Fertilizers as Heterogeneous Catalysts,” Journal of the Turkish Chemical Society Section A: Chemistry 7, no. 2 (2020): 427–40.
  • S. Chehab, Y. Merroun, T. Ghailane, N. Habbadi, S. Boukhris, A. Hassikou, R. Ghailane, M. Akhazzane, A. Kerbal, A. Daich, et al. “A New Process for Na2Ca(HPO4)2 Synthesis and Its Application as a Heterogeneous Catalyst in Knoevenagel Condensation,” Mediterranean Journal of Chemistry 7, no. 1 (2018): 56–67.
  • A. E. Hallaoui, S. Chehab, T. Ghailane, B. Malek, O. Zimou, S. Boukhriss, A. Souizi, and R. Ghailane, “Application of Phosphate Fertilizer Modified by Zinc as a Reusable Efficient Heterogeneous Catalyst for the Synthesis of Biscoumarins and Dihydropyrano[3,2-c]Chromene-3-Carbonitriles under Green Conditions,” Polycyclic Aromatic Compounds 8 (2020): 1–20.
  • A. El. Hallaoui, S. Chehab, B. Malek, O. Zimou, T. Ghailane, S. Boukhris, A. Souizi, and R. Ghailane, “Valorization of the Modified Mono Ammonium Phosphate by Cobalt in the Synthesise of 3,4‐Dihydropyrano[c]Chromene Derivatives,” ChemistrySelect 4, no. 11 (2019): 3062–70.
  • L. Meng, Z. Sun, D. Dong, H. Chen, Y. Zhu, J. Zhang, Y. Zhao, and W. You, “Hydrothermal Synthesis and Crystal Structures of Two New Divalent Metal Phosphonates with Layered Structure,” Journal of Coordination Chemistry 60, no. 19 (2007): 2075–83.
  • L. Song, J. Yang, P. He, and S. Zhang, “Synthesis of Novel Cd2P2O7/Ag3PO4 Photocatalyst with Enhanced Visible-Light Photocatalytic Performance and the Enhancement Mechanism,” Ceramics International 43, no. 2 (2017): 2076–82.
  • K. Zhu, K. Yanagisawa, A. Onda, K. Kajiyoshi, and J. Qiu, “Morphology Variation of Cadmium Hydroxyapatite Synthesized by High Temperature Mixing Method under Hydrothermal Conditions,” Materials Chemistry and Physics 113, no. 1 (2009): 239–43.
  • Y. Merroun, S. Chehab, T. Ghailane, R. Ghailane, S. Boukhris, N. Habbadi, A. Hassikou, B. Lakhrissi, and A. Souizi, “Comparative Study between the Titanium Phosphate TiP2O7 and the Phosphate Fertilizers in the Catalysis of the Quinazolin-4(3H)-One Derivatives Synthesis,” Mediterranean Journal of Chemistry 10, no. 6 (2020): 553–67.
  • Y. Merroun, S. Chehab, T. Ghailane, M. Akhazzane, A. Souizi, and R. Ghailane, “Preparation of Tin-Modified Mono-Ammonium Phosphate Fertilizer and Its Application as Heterogeneous Catalyst in the Benzimidazoles and Benzothiazoles Synthesis,” Reaction Kinetics, Mechanisms and Catalysis 126, no. 1 (2019): 249–64.
  • Y. Abrouki, A. Anouzla, H. Loukili, A. Abrouki, E. H. Loukili, J. Bennazha, A. Rayadh, S. Sebti, and M. Zahouily, “The Potassium Pyrophosphate K2CaP2O7, a New and Efficient Catalyst for the Conjugate Addition of Thiols onto Chalcones,” Global Research Journal of Molecular Catalysis 1, no. 2 (2013): 17–22.
  • J. Bennazha, M. Zahouily, S. Sebti, A. Boukhari, and E. M. Holt, “Na2CaP2O7, a New Catalyst for Knoevenagel Reaction,” Catalysis Communications 2, no. 3–4 (2001): 101–4.
  • Y. Abrouki, A. Anouzla, H. Loukili, K. Saida, J. Bennazha, A. Loukili, A. Rayadh, S. Sebti, and M. Zahouily, “Sodium Pyrophosphate: A Novel and Efficient Catalyst for Sulfa-Michael Additions,” American Journal of Biological, Chemical and Pharmaceutical Sciences 1, no. 5 (2013): 16–21.
  • Z. Benzekri, H. Serrar, S. Boukhris, and A. Souizi, “FeCl3/Egg Shell: An Effective Catalytic System for the Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones at Room Temperature,” Journal of the Turkish Chemical Society, Section A: Chemistry 4, no. 3 (2017): 775–86.
  • C. Calvo and P. K. L. Au, “Crystal Structure of Cd2P2O7,” Canadian Journal of Chemistry 47, no. 18 (1969): 3409–16.
  • V. Stefov, M. Najdoski, B. Engelen, Z. Ilievski, and A. Cahil, “Very Low H–O–H Bending Frequencies. VI. Vibrational Spectra of CdCl2·H2O,” Contributions, Section of Natural, Mathematical and Biotechnical Sciences 38, no. 1 (2017): 91–9.
  • M. B. Baraker and Blaise. Lobo, “Spectroscopic Analysis of CdCl2 Doped PVA–PVP Blend Films,” Canadian Journal of Physics 95, no. 8 (2017): 738–747.
  • D. de Waal and C. Hutter, “Vibrational Spectra of a Solid Solution of Cadmium and Calcium Pyrophosphate,” Materials Research Bulletin 29, no. 11 (1994): 1129–35.
  • E. Steger and B. Käßner, “Die Infrarotspektren Von Wasserfreienschwermetall-Diphosphaten,” Spectrochimica Acta Part A: Molecular Spectroscopy 24, no. 5 (1968): 447–56.
  • M. Ristić, S. Popović, and S. Musić, “Formation and Properties of Cd(OH)2 and CdO Particles,” Materials Letters 58, no. 20 (2004): 2494–9.
  • M. Wang, T. T. Zhang, and Z. G. Song, “Eco-Friendly Synthesis of 2-Substituted-2,3-Dihydro-4(1H)-Quinazolinones in Water,” Chinese Chemical Letters 22, no. 4 (2011): 427–30.
  • Taiebeh Tamoradi, Seyedeh Masoumeh Mousavi, and Masoud Mohammadi, “Praseodymium (III) Anchored on the CoFe2O4 MNPs: An Efficient Heterogeneous Magnetic Nanocatalyst for One-Pot, Multi-Component Domino Synthesis of Polyhydroquinoline and 2,3-Dihydroquinazolin-4(1H)-One Derivatives,” New Journal of Chemistry 44, no. 7 (2020): 3012–20.
  • L. Shiri, L. Heidari, and M. Kazemi, “Magnetic Fe3O4 Nanoparticles Supported Imine/Thiophene-Nickel (II) Complex: A New and Highly Active Heterogeneous Catalyst for the Synthesis of Polyhydroquinolines and 2,3-Dihydroquinazoline-4(1H)-Ones,” Applied Organometallic Chemistry 32, no. 1 (2018): e3943.
  • S.-G. Zhang, Z.-B. Xie, L.-S. Liu, M. Liang, and Z.-G. Le, “Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones Catalyzed by α-Chymotrypsin,” Chinese Chemical Letters 28, no. 1 (2017): 101–4.
  • S. Karhale, D. Survase, R. Bhat, P. Ubale, and V. Helavi, “A Practical and Green Protocol for the Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones Using Oxalic Acid as Organocatalyst,” Research on Chemical Intermediates 43, no. 7 (2017): 3915–24.
  • R. Katla, R. Chowrasia, C. D. G. da Silva, A. R. de Oliveira, B. F. dos Santos, and N. L. C. Domingues, “Recyclable [Ce(l-Pro)2]2 (Oxa) Used as Heterogeneous Catalyst: One-Pot Synthesis of 2,3-Dihydroquinazolin-4(1H)-Ones in Ethanol,” Synthesis 49, no. 23 (2017): 5143–8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.