142
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Ultrasonic-Mediated Green Synthesis of Novel S-Arylated-Pyridopyrimidines and Antimicrobial Evaluation against Escherichia coli and Staphylococcus aureus

, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 6546-6553 | Received 26 Aug 2021, Accepted 17 Sep 2021, Published online: 06 Oct 2021

References

  • P. Metzner, A. Thuillier, Sulfur Reagents in Organic Synthesis. Elsevier, 2013.
  • R.J. Cremlyn, An Introduction to Organosulfur Chemistry; John Wiley and Sons: Chichester, 1996.
  • Simpkins NS. Sulfones in Organic Synthesis; Pergamon Press: Oxford, 1993.
  • C. Shen, P. Zhang, Q. Sun, Bai, TA. Hor, and X. Liu, “Recent Advances in C-S Bond Formation via C-H Bond Functionalization and Decarboxylation,” Chemical Society Reviews 44, no. 1 (2015): 291–314.
  • N. W. Liu, S. Liang, and G. Manolikakes, “Recent Advances in the Synthesis of Sulfones,” Synthesis 48, (2016): 1939–73.
  • A. S. Deeming, C. J. Russell, and M. C. Willis, “ Palladium(II)-Catalyzed Synthesis of Sulfinates from Boronic Acids and DABSO: A Redox-Neutral, Phosphine-Free Transformation,” Angewandte Chemie (International ed. in English) 55, no. 2 (2016): 747–50.
  • (a) C.E. Sleet, Tambar UK. “Copper − Catalyzed Aminothiolation of 1,3-Dienes via a Dihydrothiazine Intermediate.” Angewandte Chemie (International ed. in English), 55 (2016): 5536–40. (b) D. Zheng; J. Yu; J. Wu, “Generation of Sulfonyl Radicals from Aryldiazonium Tetrafluoroborates and Sulfur Dioxide: The Synthesis of 3-Sulfonated Coumarins.” Angewandte Chemie (International ed. in English) 55 (2016): 11925–29.
  • X. H. Yang, R. Davison, and V. M. Dong, “Catalytic Hydrothiolation: Regio- and Enantioselective Coupling of Thiols and Dienes,” Journal of the American Chemical Society 140, no. 33 (2018): 10443–6.
  • T. Markovic, P. R. Murray, B. N. Rocke, A. Shavnya, D. C. Blakemore, and M. C. Willis, “Heterocyclic Allylsulfones as Latent Heteroaryl Nucleophiles in Palladium-Catalyzed Cross-Coupling Reactions,” Journal of the American Chemical Society 140, no. 46 (2018): 15916–23.
  • A. Gangjee, Y. Zhu, and S. F. Queener, “6-Substituted 2,4-Diaminopyrido[3,2-d]pyrimidine Analogues of Piritrexim as Inhibitors of Dihydrofolate Reductase from Rat Liver, Pneumocystis carinii, and Toxoplasma gondii and as Antitumor Agents,” Journal of Medicinal Chemistry 41, no. 23 (1998): 4533–41.
  • A. Tanaka, T. Terasawa, H. Hagihara,. Ishibe, M. Sawada, Y. Sakuma, M. Hashimoto, H. Takasugi, and H. Tanaka, “Inhibitors of Acyl-CoA: Cholesterol O-Acyltransferase. 3. Discovery of a Novel Series of N-alkyl-N-[(fluorophenoxy)benzyl]-N'-Arylureas with Weak Toxicological Effects on Adrenal Glands,” Journal of Medicinal Chemistry 41, no. 22 (1998): 4408–20. − 
  • Barry G. Shearer, Robert W. Wiethe, Adam Ashe, Andrew N. Billin, James M. Way, Thomas B. Stanley, Craig D. Wagner, Robert X. Xu, Lisa M. Leesnitzer, Raymond V. Merrihew, et al. “ Identification and Characterization of 4-Chloro-N-(2-{[5-trifluoromethyl)-2-Pyridyl]sulfonyl}Ethyl)Benzamide (GSK3787), a Selective and Irreversible Peroxisome Proliferator-Activated Receptor Delta (PPARdelta) Antagonist,” Journal of Medicinal Chemistry 53, no. 4 (2010): 1857–61.
  • Sangdon Han, Sanju Narayanan, Sun Hee Kim, Imelda Calderon, Xiuwen Zhu, Andrew Kawasaki, Dawei Yue, Juerg Lehmann, Amy Wong, Daniel J. Buzard, et al. “Discovery of a Novel Trans-1,4-Dioxycyclohexane GPR119 Agonist Series,” Bioorganic & Medicinal Chemistry Letters 25, no. 15 (2015): 3034–8. − 
  • Hsueh-Yun Lee, Chih-Yi Chang, Chih-Jou Su, Han-Li Huang, Samir Mehndiratta, Yuh-Hsuan Chao, Chia-Ming Hsu, Sunil Kumar, Ting-Yi Sung, Yi-Zhen Huang, et al. “2-(Phenylsulfonyl)Quinoline N-Hydroxyacrylamides as Potent Anticancer Agents Inhibiting Histone Deacetylase,” European Journal of Medicinal Chemistry 122, (2016): 92–101.
  • Y. Zhao, W. Huang, L. Zhu, and J. Hu, “Difluoromethyl 2-Pyridyl Sulfone: A New Gem-Difluoroolefination Reagent for Aldehydes and Ketones,” Organic Letters 12, no. 7 (2010): 1444–7.
  • C. Aïssa, “Mechanistic Manifold and New Developments of the Julia − Kocienski Reaction,” European Journal of Organic Chemistry 2009, no. 12 (2009): 1831–44. − 
  • Y. Guan, C. Wang, Wang, G. Dang, C. Chen, X. Zhou, and H. Zhao, “Methylsulfone as a Leaving Group for Synthesis of Hyperbranched Poly(Arylene Pyrimidine Ether)s by Nucleophilic Aromatic Substitution,” RSC Advances 5, no. 17 (2015): 12821–3. − 
  • H. Qiao, S. Sun, F. Yang, Y. Zhu, W. Zhu, Y. Dong, Y. Wu, X. Kong, L. Jiang, and Y. Wu, “Copper(I)-Catalyzed Sulfonylation of 8-Aminoquinoline Amides with Sulfonyl Chlorides in Air,” Organic Letters 17, no. 24 (2015): 6086–9.
  • J. Zhang, Y. Shao, H. Wang, Q. Luo, J. Chen, D. Xu, and X. Wan, “Dual Roles of Sulfonyl Hydrazides: A Three-Component Reaction to Construct Fully Substituted Pyrazoles Using TBAI/TBHP,” Organic Letters 16, no. 12 (2014): 3312–5.
  • M. Y. Chang, Y. C. Cheng, and Y. J. Lu, “One-Pot Access to Sulfonylmethyl Arylpyrroles via the Domino Aerobic Wacker-Type Aminocyclization/1,4-Sulfonyl Migration,” Organic Letters 16, no. 23 (2014): 6252–5.
  • Y. Zhu, W. T. Lu, H. C. Sun, and Z. P. Zhan, “Lewis Base Catalyzed Synthesis of Multisubstituted 4-Sulfonyl-1H-Pyrazole Involving a Novel 1,3-Sulfonyl Shift,” Organic Letters 15, no. 16 (2013): 4146–9.
  • Z. Wu, H. Song, X. Cui, C. Pi, W. Du, and Y. Wu, “Sulfonylation of Quinoline N-Oxides with Aryl Sulfonyl Chlorides via Copper-Catalyzed C-H bonds activation,” Organic Letters 15, no. 6 (2013): 1270–3.
  • D. J. Michaelis, M. A. Ischay, and T. P. Yoon, “Activation of N-Sulfonyl Oxaziridines Using Copper(II) Catalysts: Aminohydroxylations of Styrenes and 1,3-Dienes,” Journal of the American Chemical Society 130, no. 20 (2008): 6610–5.
  • J. Audoux, N. Plé, A. Turck, and G. Queguiner, “First Functionalization by Metallation of the Pyridine Moiety of 4-Methoxypyridopyrimidines. Diazines: Part 38,” Tetrahedron 60, no. 30 (2004): 6353–62.
  • T. H. Althuis, P. F. Moore, and H. J. Hess, “Development of Ethyl 3,4-Dihydro-4-Oxopyrimido[4,5-b]Quinoline-2-Carboxylate, a New Prototype with Oral Antiallergy Activity,” Journal of Medicinal Chemistry 22, no. 1 (1979): 44–8.
  • T. H. Althuis, S. B. Kadin, L. J. Czuba, P. F. Moore, and H. J. Hess, “Structure-Activity Relationships in a Series of Novel 3,4-Dihydro-4-Oxopyrimido[4,5-b]Quinoline-2-Carboxylic Acid Antiallergy Agents,” Journal of Medicinal Chemistry 23, no. 3 (1980): 262–9.
  • B. S. Hurlbert, and B. F. Valenti, “Studies on Condensed Pyrimidine Systems. XXIV. The Condensation of 2,4,6-Triaminopyrimidine with Malondialdehyde Derivatives,” Journal of Medicinal Chemistry 11, no. 4 (1968): 708–10.
  • G. Singh, G. Singh, A. K. Yadav, and A. K. Mishra, “Synthesis and Antimicrobial Evaluation of Some New Pyrido[2,3-d]Pyrimidines and Their Ribofuranosides,” Indian Journal of Chemistry -Section B (IJC-B) 41, (2002): 430–2.
  • I. Bornschein, R. Kraft, S. Pfeifer, M. Ullmann, and H. Langner, “Analysis and Biochemistry of Aza Analogues of Methaqualone. Part 7: biotransformation of 2-Methyl-3-(2’-Methylphenyl)-4-Oxo-3,4-Dihydropyrido[2,3-d]Pyrimidine,” Die Pharmazie 34, no. 11 (1979): 732–5.
  • L. R. Bennett, C. J. Blankley, R. W. Fleming, R. D. Smith, and D. K. Tessman, “Antihypertensive Activity of 6-Arylpyrido[2,3-d]Pyrimidin-7-Amine Derivatives,” Journal of Medicinal Chemistry 24, no. 4 (1981): 382–9.
  • N. Ghilsoo, M. Y. Cheol, K. Euikyung, K. R. Chung, H. K. Joong, H. S. Jung, and H. K. “Sung Syntheses and Evaluation of Pyrido[2,3-d]Pyrimidine-2,4-Diones as PDE 4 Inhibitors,” Bioorganic and Medicinal Chemistry Letters 11 (2001): 611–4.
  • M. R. Mahmoud, E. A. A. El-Bordany, N. F. Hassan, and F. S. M. Abu El-Azm, “Abu El-Azm, Utility of Nitriles in Synthesis of Pyrido[2,3-d]Pyrimidines, Thiazolo[3,2-a]Pyridines, Pyrano[2,3-b]Benzopyrrole, and Pyrido[2,3-d]Benzopyrroles,” Phosphorus, Sulfur, and Silicon and the Related Elements 182, no. 11 (2007): 2507–21.
  • A. B. A. El-Gazzar, A. M. Gaafar, M. M. Youssef, A. A. Abu-Hashem, and F. A. Badria, “Synthesis and anti-Oxidant Activity of Novel Pyrimido[4,5-b]Quinolin-4-One Derivatives with a New Ring System,” Phosphorus, Sulfur, and Silicon and the Related Elements 182, no. 9 (2007): 2009–37.
  • A. Agarwal, R. Ramesh, A. Ashutosh, N. Goyal, P. M. S. Chauhan, and S. Gupta, “Dihydropyrido[2,3-d]Pyrimidines as a New Class of Antileishmanial Agents,” Bioorganic & Medicinal Chemistry 13 (2005): 6678–84.
  • J. B. Smaill, B. D. Palmer, G. W. Rewcastle, W. A. Denny, D. J. McNamara, E. M. Dobrusin, A. J. Bridges, H. Zhou, H. D. H. Showalter, R. T. Winters, et al. “Tyrosine Kinase Inhibitors. 15. 4-(Phenylamino)Quinazoline and 4-(Phenylamino)Pyrido[d]Pyrimidine Acrylamides as Irreversible Inhibitors of the ATP Binding Site of the Epidermal Growth Factor Receptor,” Journal of Medicinal Chemistry 42, no. 10 (1999): 1803–15.
  • A. Gangjee, O. Adair, and S. F. Queener, “Pneumocystis carinii and Toxoplasma gondii Dihydrofolate Reductase Inhibitors and Antitumor Agents: Synthesis and Biological Activities of 2,4-Diamino-5-Methyl-6-[(monosubstituted anilino)methyl] pyrido[2,3-d]pyrimidines,” Journal of Medicinal Chemistry 42, no. 13 (1999): 2447–55.
  • J. I. DeGraw, P. H. Christie, W. T. Colwell, and F. M. Sirotnak, “Sirotnak Synthesis and Antifolate Properties of 5,10-Ethano-5,10-Dideazaaminopterin,” Journal of Medicinal Chemistry 35, no. 2 (1992): 320–4.
  • A. Rosowsky, and Chen, “A Novel Method of Synthesis of 2,4-Diamino-6-Arylmethylquinazolines Using Palladium(0)-Catalyzed Organozinc Chemistry,” The Journal of Organic Chemistry 66, no. 22 (2001): 7522–6.
  • T. Kimura, Sonochemistry and the Acoustic Bubble (2015), 171–86. Elsevier.
  • Y. Riadi, and M. Geesi, “Photochemical Route for the Synthesis of Novel 2-Monosubstituted Pyrido [2, 3-d] Pyrimidines by Palladium-Catalyzed Cross-Coupling Reactions,” Chemical Papers 72, (2018): 697–701.
  • Y. Riadi, S. Massip, J.-M. Leger, C. Jarry, S. Lazar, and G. Guillaumet, “Convenient Synthesis of 2, 4-Disubstituted Pyrido [2, 3-d] Pyrimidines via Regioselective Palladium-Catalyzed Reactions,” Tetrahedron 68, no. 25 (2012): 5018–24.
  • Y. Riadi, R. Mamouni, R. Azzalou, M. El. Haddad, S. Routier, G. Guillaumet, and S. Lazar, “An Efficient and Reusable Heterogeneous Catalyst Animal Bone Meal for Facile Synthesis of Benzimidazoles, Benzoxazoles, and Benzothiazoles,” Tetrahedron Letters 52, no. 27 (2011): 3492–5.
  • Y. Riadi, R. Mamouni, S. Routier, G. Guillaumet, and S. Lazar, “Ecofriendly Synthesis of 3-Cyanopyridine Derivatives by Multi-Component Reaction Catalyzed by Animal Bone Meal,” Environmental Chemistry Letters 12, no. 4 (2014): 523–7.
  • O. Dehbi, E. A. Ishak, M. A. Bakht, M. H. Geesi, M. B. Alshammari, V. Chagnault, A. Kaiba, S. Lazar, and Y. Riadi, “Water-Mediated Synthesis of Disubstituted 5-Aminopyrimidines from Vinyl Azides under Microwave Irradiation,” Green Chemistry Letters and Reviews 11, no. 2 (2018): 62–6.
  • M. H. Geesi, O. Ouerghi, O. Dehbi, and Y. Riadi, “Metal-Doped TiO2 Nanocatalysts in an MX2/Urea Mixture for the Synthesis of Benzothiazoles Bearing Substituted Pyrrolidin-2-Ones: Enhanced Catalytic Performance and Antibacterial Activity,” Journal of Environmental Chemical Engineering 9, no. 4 (2021): 105344.
  • Y. Riadi, “UV Light Mediated Palladium-Catalyzed Synthesis of 2-Substituedpyrido[2,3-d]pyrimidines,” Polycyclic Aromatic Compounds, 41 (2021) 1141–1146. https://doi.org/10.1080/10406638.2019.1665554.
  • M. H. Geesi, M.E. Moustapha, M. A. Bakht, Y. Riadi, “Ultrasound-accelerated green synthesis of new quinolin-2-thione derivatives and antimicrobial evaluation against Escherichia coli and Staphylococcus aureus,” Sustainable Chemistry and Pharmacy, 15 (2020) 100195. https://doi.org/10.1016/j.scp.2019.100195
  • Y. Riadi, “UV Light-mediated regioselective methylsulfanyl discrimination via Pd-catalyzed cross-coupling reactions of 2,4-dimethylsulfanylpyrido[2,3-d]pyrimidines,” Journal of Sulfur Chemistry, 40 (2019) 351–360. https://doi.org/10.1080/17415993.2019.1590581
  • Y. Riadi, O. Ouerghi, M. H. Geesi, O. Dehbi, A. Kaiba, E. Anouar, and P. Guionneau, “Efficient Novel Eutectic-Mixture-Mediated Synthesis of Benzoxazole-Linked Pyrrolidin-2-One Heterocycles,” Journal of Molecular Liquids 323 (2021): 115011.
  • J. M. Andrews, “Determination of Minimum Inhibitory Concentrations,” The Journal of Antimicrobial Chemotherapy 48, Suppl. 1, (2001): 5–16.
  • C. M. Lacbay, M. Menni, J. A. Bernatchez, M. Gotte, and Y. S. Tsantrizos, “Pharmacophore Requirements for HIV-1 Reverse Transcriptase Inhibitors That Selectively "Freeze" the Pre-Translocated Complex during the Polymerization Catalytic Cycle,” Bioorganic & Medicinal Chemistry 26, no. 8 (2018): 1713–26.
  • A. I. Sanchez, V. Martinez-Barrasa, C. Burgos, J. J. Vaquero, J. Alvarez-Builla, E. Terricabras, and V. Segarra, “Synthesis and Evaluation of Quinazoline Derivatives as Phosphodiesterase 7 Inhibitors,” Bioorganic & Medicinal Chemistry 21, no. 8 (2013): 2370–8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.