162
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis of Tri-Substituted Olefin Derivatives from 1-Alkene-1,2-Diboronic Esters via Sequential Suzuki-Suzuki Coupling Reaction and Their Biological Activity

, , , &
Pages 6750-6759 | Received 20 May 2021, Accepted 29 Sep 2021, Published online: 18 Oct 2021

References

  • (a) Negishi, E.-i.; Huang, Z.; Wang, G.; Mohan, S.; Wang, C.; Hattori, H. “Recent Advances in Efficient and Selective Synthesis of Di-, Tri-, and Tetrasubstituted Alkenes via Pd- Catalyzed Alkenylation–Carbonyl Olefination Synergy”. Accounts of Chemical Research 41 (2008): 1474. (b) Oger, C.; Balas, L.; Durand, T.; Galano, J. M. “Are alkyne reductions chemo- , regio-, and stereoselective enough to provide pure (Z)-olefins in polyfunctionalized bioactive molecules?” Chemical Reviews 113 (2013): 1313. (c) Mailig, M.; Hazra, A.; Armstrong, M. K.; Lalic, G. “Catalytic Anti-Markovnikov Hydroallylation of Terminal and Functionalized Internal Alkynes: Synthesis of Skipped Dienes and Trisubstituted Alkenes”. Journal of the American Chemical Society 139 (2017): 6969. (d) Han, H. S.; Lee, Y. J.; Jung, Y. S.; Han, S. B. “Stereoselective Photoredox-Catalyzed Chlorotrifluoromethylation of Alkynes: Synthesis of Tetrasubstituted Alkenes”. Organic Letters 19 (2017): 1962. (e) Manikandan, R.; Jeganmohan, M. “Recent advances in the ruthenium(II)-catalyzed chelation-assisted C–H olefination of substituted aromatics, alkenes and heteroaromatics with alkenes via the deprotonation pathway”. Chemical Communications 53 (2017): 8931. (f) Kumar, R.; Dwivedi, V.; Reddy, M. S. “Metal- Free Iodosulfonylation of Internal Alkynes: Stereodefined Access to Tetrasubstituted Olefins”. Advanced Synthesis & Catalysis 359 (2017): 2847.
  • (a) Robertson, D. W.; Katzenellenbogen, J. A.; Hayes, J. R.; Katzenellenbogen, B. S. “Antiestrogen basicity–activity relationships: a comparison of the estrogen receptor binding and antiuterotrophic potencies of several analogues of (Z)-1,2-diphenyl-1-[4-[2-(dimethylamino)ethoxy]phenyl]-1-butene (tamoxifen, Nolvadex) having altered basicity”. Journal of Medicinal Chemistry 25 (1982): 167. (b) Wu, P.; Wang, L.; Wu, K.; Yu, Z. “Total Synthesis of Kopsinine ”. Organic Letters 17 (2015): 868. (c) Higman, C. S.; Lummiss, J. A. M.; Fogg, D. E. “Olefin Metathesis at the Dawn of Implementation in Pharmaceutical and Specialty- Chemicals Manufacturing”. Angewandte Chemie (International ed. in English) 55 (2016): 3552.
  • (a) Levenson, A. S.; Jordan, V. C. “Selective oestrogen receptor modulation: molecular pharmacology for the millennium”. European Journal of Cancer 35 (1999): 1628. (b) Gigant, N.; Quintin, F.; Bäckvall, J. E. “Preparation of tetrasubstituted olefins using mono or double aerobic direct C-H functionalization strategies: importance of steric effects”. The Journal of Organic Chemistry 80 (2015): 2796. (c) Lim, N.-K.; Weiss, P.; Li, B. X.; McCulley, C. H.; Hare, S. R.; Bensema, B. L.; Palazzo, T. A.; Tantillo, D. J.; Zhang, H.-M.; Gosselin, F. “Synthesis of Highly Stereodefined Tetrasubstituted Acyclic All-carbon Olefins via a syn-Elimination Approach”. Organic Letters 19 (2017): 6212.
  • (a) Liu, X.-Y.; Shimizu, M.; Hiyama, T. “ A Facile Stereocontrolled Approach to CF3-Substituted Triarylethenes: Synthesis of Panomifene,” Angewandte Chemie International Edition, 43 (2004): 879, 882. (b) Bhatt, S.; Stender, J. D.; Joshi, S.; Wu, G.; Katzenellenbogen, B. S. “OCT-4: a novel estrogen receptor-α collaborator that promotes tamoxifen resistance in breast cancer cells”. Oncogene 35 (2016): 5722. (c) Kortman, G. D.; Hull, K. L. “Copper-Catalyzed Hydroarylation of Internal Alkynes: Highly Regio- and Diastereoselective Synthesis of 1,1-Diaryl, Trisubstituted Olefins”. ACS Catalysis 7 (2017): 6220.
  • G. Nicolas, Q. Francois, and B. Jan-E, “Preparation of Tetrasubstituted Olefins Using Mono or Double Aerobic Direct C–H Functionalization Strategies: Importance of Steric Effects,” Journal of Organic Chemistry 80 (2015): 1796–2803.
  • M. L. Beer, J. Lemon, and J. F. Valliant, “Preparation and Evaluation of Carborane Analogues of Tamoxifen,”Journal of Medicinal Chemistry 53, no. 22 (2010): 8012–20.
  • E. Hamel, and C. M. Lin, “Interactions of Combretastatin, A New Plant-Derived Antimitotic Agent, with Tubulin,” Biochemical Pharmacology 32, no. 24 (1983): 3864–7.
  • G. Pettit, S. Singh, B. Niven, M. L. Hamel, and E. Schmidt, “Isolation, Structure, and Synthesis of Combretastatins A-1 and B-1, Potent New Inhibitors of Microtubule Assembly, Derived from Combretum Caffrum,”Journal of Natural Products 50, no. 1 (1987): 119–31.
  • George R. Pettit, Monte R. Rhodes, Delbert L. Herald, Ernest Hamel, Jean M. Schmidt, and Robin K. Pettit, “Antineoplastic Agents. 445. Synthesis and Evaluation of Structural Modifications of (Z)- and (E)-Combretastatin A-41,”Journal of Medicinal Chemistry 48, no. 12 (2005): 4087–99.
  • (a) Rustin, G. J.; Shreever, G.; Nathan, P. D.; Ganesan, T. S.; Wang, D.; Boxall, J.; Poupard, L.; Chaplin, D. J.; Stratford, M. R. L.; Balkisson, J.; and Zweife, M.; “Magnesium intake, plasma C-peptide, and colorectal cancer incidence in US women: a 28-year follow-up study”. British Journal of Cancer 102 (2012): 1335–60. (b) Delmonte, A. and Sessa, C. “AVE8062: A New Combretastatin Derivative Vascular Disrupting Agent,” Expert Opinion on Investigational Drugs 18 (2009): 1541–48.
  • M. Ma, L. Sun, H. Lou, and M. Ji, “Synthesis and Biological Evaluation of Combretastatin A-4 Derivatives Containing a 3'-O-Substituted Carbonic Ether Moiety as Potential Antitumor Agents,”Chemistry Central Journal 7, no. 1 (2013): 179.
  • J. Aziz, E. Brachet, A. Hamez, J. F. Peyat, G. Bernadat, E. Morvan, J. Bignon, J. W. Bakala, D. Desravines, J. Dubois, et al. “Synthesis, biological evaluation, and structure–activity relationships of tri- and tetrasubstituted olefins related to isocombretastatin A-4 as new tubulin inhibitors,” Organic & Biomolecular Chemistry 11 (2013): 385–524.
  • (a) J. M. Eissen and D. Lenoir, ACS Sustainable Chemistry & Engineering 5 (2017): 10459–10473; (b) K. Wu, N. Sun, B. Hu, Z. Shen, L. Jin and X. Hu, Advanced Synthesis & Catalysis 360 (2018): 3038–3043; (c) Y. Yamamoto, Chemical Society Reviews 43 (2014): 1575–1600.
  • See recent example for trisubstituted olefine derivatives: (a) Zhu, Z.F.; Tu, J. L.; Liu, F. “Ni-Catalyzed deaminative hydroalkylation of internal alkynes”. Chemical Communications 55 (2019): 11478–81. (b) Lu, X.Y.; Liu, C. C.; Jiang, R. C.; Yan, L.Y.; liu, Q. L.; Wang, Q. Q.; Li, J. M. “Synthesis of trisubstituted alkenes by Ni-catalyzed hydroalkylation of internal alkynes with cycloketone oxime esters”. Chemical Communications 56 (2020): 14191–4. (c) Hao, T.T.; Liang, H. R.; Ou-Yang, Y. H.; Yin, C. Z.; Zheng, X. L.; Yuan, M. L.; Li, R. X.; Fu, H. Y.; Chen, H. “Palladium-Catalyzed Domino Reaction for Stereoselective Synthesis of Multisubstituted Olefins: Construction of Blue Luminogens”. The Journal of Organic Chemistry 83 (2018): 4441–54. (d) Yu, L.; LV, L.; Qiu, Z.; Chen, Z.; Tan, Z.; Liang, Y. F.; Li, C.J. “Palladium-Catalyzed Formal Hydroalkylation of Aryl-Substituted Alkynes with Hydrazones”. Angewandte Chemie (International ed. in English) 59, no. 33 (2020): 14009–14013. (e) Hu, Y.; Sun, W.; Zhang, T.; Xu, N.; Xu, J.; Lan, Y.; Liu, C. “Stereoselective Synthesis of Trisubstituted Vinylboronates from Ketone Enolates Triggered by 1,3-Metalate Rearrangement of Lithium Enolates”. Angewandte Chemie (International ed. in English) 58(44) (2019): 15813–15818. (f) Xiao, Y.L.; Li, J. S.; Hong, M. L.; Wang, J. Y.; Ma, W. J. “Synthesis of trisubstituted olefins via nickel-catalyzed decarboxylative hydroalkylation of internal alkynes”. Tetrahedron 74 (2018): 6979–84. (g) Mandal, S.; Mandal, S.; Geetharani, K. “Zinc-Catalysed Hydroboration of Terminal and Internal Alkynes”. Chemistry – An Asian Journal 14 (2019): 4553–4556.
  • Hall, D. G., Ed.; Boronic Acids: Preparation, Applications in Organic Synthesis and Medicine, 2nd ed. (Weinheim, Germany: Wiley-VCH, 2011).
  • T. Sridhar, F. Berrée, G. V. M. Sharma, and B. Carboni, “Regio- and Stereocontrolled Access to γ-boronated unsaturated amino esters and derivatives from (Z)-alkenyl 1,2-bis(boronates) ),” The Journal of organic chemistry 79, no. 2 (2014): 783–9.
  • Vankudoth Jayaram, Tailor Sridhar, Gangavaram V. M. Sharma, Fabienne Berrée, and Bertrand Carboni, “Synthesis of 1-Amino-1H-Indenes via a Sequential Suzuki-Miyaura Coupling/Petasis Condensation Sequence,” The Journal of Organic Chemistry 82, no. 3 (2017): 1803–11. − 
  • Vankudoth Jayaram, Tailor Sridhar, Gangavaram V. M. Sharma, Fabienne Berrée, and Bertrand Carboni, “Synthesis of Polysubstituted Isoquinolines and Related Fused Pyridines from Alkenyl Boronic Esters via a Copper-Catalyzed Azidation/Aza-Wittig Condensation Sequence,” The Journal of Organic Chemistry 83, no. 2 (2018): 843–53.
  • Maruti Mali, Vankudoth Jayaram, Gangavaram V. M. Sharma, Subhash Ghosh, Fabienne Berrée, Vincent Dorcet, and Bertrand Carboni, “Copper-Mediated Synthesis of (E)-1-Azido and (Z)-1,2-Diazido Alkenes from 1-Alkene-1,2-Diboronic Esters: An Approach to Mono- and 1,2-Di-(1,2,3-Triazolyl)-Alkenes and Fused Bis-(1,2,3-Triazolo)-Pyrazines,” The Journal of Organic Chemistry 85, no. 23 (2020): 15104–15.
  • (a) Alonso, F.; Mohlie, Y.; Pastor-Perez, L.; Antonio, S. E. “Solvent- and Ligand-free Diboration of Alkynes and Alkenes Catalyzed by Platinum Nanoparticles on Titania,” ChemCatChem 6 (2014): 857–65. (b) Peng, S.; Liu, G.; Huang, Z. Organic Letters 20 (2018): 7363–66. (c) Kuang, Z.; Gao, G.; Song, Q. “Base-catalyzed diborylation of alkynes: synthesis and applications of cis-1,2-bis(boryl)alkenes,” Science China Chemistry 62 (2019): 62–66.
  • (a) Ishiyama, T.; Matsuda, N.; Miyaura, N.; Suzuki, A. “Platinum(0)-catalyzed diboration of alkynes,” Journal of the American Chemical Society 115 (1993): 11018. (b) Ishiyama, T.; Matsuda, N.; Murata, M.; Ozawa, F.; Suzuki, A.; Miyaura, N. “Platinum(0)-Catalyzed Diboration of Alkynes with Tetrakis(alkoxo)diborons: An Efficient and Convenient Approach to cis-Bis(boryl)alkenes”, Organometallics 15 (1996): 713. (c) Q. Chen, J. Zhao, Y.Ishikawa, N.Asao, Y. Yamamoto, T. Jin, “Remarkable Catalytic Property of Nanoporous Gold on Activation of Diborons for Direct Diboration of Alkynes,” Organic Letters 2013, 15, 5766–5769.
  • (a) A. Ganic and A. Pfaltz, “Reducing Challenges in Organic Synthesis with Stereoselective Hydrogenation and Tandem Catalysis,” Chemistry—A European Journal 18 (2012), 6724. (b) N. Iwadate and M. Suginome, “Differentially Protected Diboron for Regioselective Diboration of Alkynes: Internal-Selective Cross-Coupling of 1-Alkene-1,2- diboronic Acid Derivatives,” Journal of the American Chemical Society 132 (2010), 2548.
  • G. Roberto, E. P. Andrea, B. Katja, C. Andrea, and O. S. Michel, “Tubulin as a target for anticancer drugs: agents which interact with the mitotic spindle,” Chem 2, (2017): 102–13.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.