278
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Quantum Chemical Calculations of 5-Diethylamino-2-{[4-(3-Methyl-3-Phenyl-Cyclobutyl)-Thiazol-2-yl]-Hydrazonomethyl}-Phenol Single Crystal Containing Heteroatoms

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 7476-7499 | Received 15 Apr 2020, Accepted 27 Oct 2021, Published online: 18 Nov 2021

References

  • H. Kargar, A. A. Ardakani, M. N. Tahir, M. Ashfaq, and K. S. Munawar, “Synthesis, Spectral Characterization, Crystal Structure Determination and Antimicrobial Activity of Ni (II), Cu (II) and Zn (II) Complexes with the Schiff Base Ligand Derived from 3, 5-Dibromosalicylaldehyde,” Journal of Molecular Structure 1229, (2021) : 129842.
  • H. Kargar, V. Torabi, A. Akbari, R. Behjatmanesh-Ardakani, A. Sahraei, and M. N. Tahir, “Pd (II) and Ni (II) Complexes Containing an Asymmetric Schiff Base Ligand: Synthesis, X-Ray Crystal Structure, Spectroscopic Investigations and Computational Studies,” Journal of Molecular Structure 1205, (2020) : 127642.
  • H. Kargar, V. Torabi, A. Akbari, R. Behjatmanesh-Ardakani, A. Sahraei, and M. N. Tahir, “Synthesis, Crystal Structure, Spectroscopic Investigations, and Computational Studies of Ni (II) and Pd (II) Complexes with Asymmetric Tetradentate NOON Schiff Base Ligand,” Structural Chemistry 30, no. 6 (2019) : 2289–99.
  • H. Kargar, M. Fallah-Mehrjardi, R. Behjatmanesh-Ardakani, V. Torabi, K. S. Munawar, M. Ashfaq, and M. N. Tahir, “Sonication-Assisted Synthesis of New Schiff Bases Derived from 3-Ethoxysalicylaldehyde: Crystal Structure Determination, Hirshfeld Surface Analysis, Theoretical Calculations and Spectroscopic Studies,” Journal of Molecular Structure 1243 (2021) : 130782.
  • K. S. Munawar, S. Ali, M. N. Tahir, N. Khalid, Q. Abbas, I. Z. Qureshi, S. Hussain, and M. Ashfaq, “Synthesis, Spectroscopic Characterization, X-Ray Crystal Structure, Antimicrobial, DNA-Binding, Alkaline Phosphatase and Insulin-Mimetic Studies of Oxidovanadium (IV) Complexes of Azomethine Precursors,” Journal of Coordination Chemistry 73, no. 16 (2020) : 2275–300.
  • Z. H. Chohan, M. Arif, and M. Sarfraz, “Metal‐Based Antibacterial and Antifungal Amino Acid Derived Schiff Bases: their Synthesis, Characterization and in Vitro Biological Activity,” Applied Organometallic Chemistry 21, no. 4 (2007) : 294–302.
  • V. Tsapkov, V. Prisacar, S. Buracheva, D. Lazakovich, and A. Gulya, “Synthesis and Antimicrobial Activity of Sulfazine-Containing Copper (II) Coordination Compounds with Substituted Salicylaldehydebenzoylhydrazones,” Pharmaceutical Chemistry Journal 42, no. 9 (2008) : 523–6.
  • A. Rauf, A. Shah, K. S. Munawar, S. Ali, M. N. Tahir, M. Javed, and A. M. Khan, “Synthesis, Physicochemical Elucidation, Biological Screening and Molecular Docking Studies of a Schiff Base and Its Metal (II) Complexes,” Arabian Journal of Chemistry 13, no. 1 (2020) : 1130–41.
  • J.R. Davis, Corrosion: Understanding the Basics (Materials Park, Ohio: ASM International, 2000).
  • C. Vargel, Corrosion of Aluminium, 2nd Ed., (Amsterdam: Elsevier, 2020).
  • E. Torsner, “Solving Corrosion Problems in Biofuels Industry, Corrosion Engineering,” Science and Technology 45, no. 1 (2010) : 42–8.
  • D. K. Verma, R. Aslam, J. Aslam, M. Quraishi, E. E. Ebenso, and C. Verma, “Computational Modeling: Theoretical Predictive Tools for Designing of Potential Organic Corrosion Inhibitors,” Journal of Molecular Structure 1236 (2021) : 130294.
  • N. P. Kolenchin, V. Kuskov, and P. Shadrina, “New Technologies of Anodizing Components of Oil and Gas Industry Equipment Made of Aluminum Alloys,” Applied Mechanics and Materials 770 (2015) : 121–5.
  • G. Elewady, I. El-Said, and A. Fouda, “Anion Surfactants as Corrosion Inhibitors for Aluminum Dissolution in HCl Solutions,” International Journal of Electrochemical Science 3, no. 2 (2008) : 177–90.
  • M. Finšgar, and J. Jackson, “Application of Corrosion Inhibitors for Steels in Acidic Media for the Oil and Gas Industry: A Review,” Corrosion Science 86 (2014) : 17–41.
  • N. Nnaji, N. Nwaji, J. Mack, and T. Nyokong, “Ball-Type Phthalocyanines and Reduced Graphene Oxide Nanoparticles as Separate and Combined Corrosion Inhibitors of Aluminium in HCl,” Journal of Molecular Structure 1236 (2021) : 130279.
  • N. Abdelshafi, “Electrochemical and Molecular Dynamic Investigation of Some New Pyrimidine Derivatives as Corrosion Inhibitors for Aluminium in Acid Medium,” Protection of Metals and Physical Chemistry of Surfaces 56, no. 5 (2020) : 1066–80.
  • B. E.-D. M. El-Gendy, S. T. Atwa, A. A. Ahmed, and Y. Ali, “Synthesis and Characterization of Carbon Steel Corrosion Inhibitors Based on 4, 5, 6, 7-Tetrahydrobenzo [b] Thiophene Scaffold,” Protection of Metals and Physical Chemistry of Surfaces 55, no. 1 (2019) : 179–86.
  • K. C. Emregül, and M. Hayvalí, “Studies on the Effect of a Newly Synthesized Schiff Base Compound from Phenazone and Vanillin on the Corrosion of Steel in 2 M HCl,” Corrosion Science 48, no. 4 (2006) : 797–812.
  • C. T. Zeyrek, B. Boyacioglu, and H. Ünver, “Density Functional Modelling Studies of Chloride-Substituted Schiff Bases as Corrosion Inhibitors: Optimized Geometries, Atomic Charges, Solvent and Non-Linear Optical Effects,” Protection of Metals and Physical Chemistry of Surfaces 53, no. 1 (2017) : 159–76.
  • E. E. Ebenso, D. A. Isabirye, and N. O. Eddy, “Adsorption and Quantum Chemical Studies on the Inhibition Potentials of Some Thiosemicarbazides for the Corrosion of Mild Steel in Acidic Medium,” International Journal of Molecular Sciences 11, no. 6 (2010) : 2473–98.
  • A. D. Becke, “Density‐Functional Thermochemistry. III. The Role of Exact Exchange,” The Journal of Chemical Physics 98, no. 7 (1993) : 5648–52.
  • C. Lee, W. Yang, and R. G. Parr, “Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density,” Physical Review B Condensed Matter 37, no. 2 (1988) : 785–9.
  • P. Hohenberg, and W. Kohn, “Inhomogeneous Electron Gas,” Physical Review 136, no. 3B (1964) : B864–B871.
  • M. Frisch, G. Trucks, H.B. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, Gaussian 09, revision a. 02 (Wallingford, CT: Gaussian, Inc., 2009).
  • T. Keith, J. Millam, R. Dennington, GaussView, version 5 (Shawnee Mission KS: Semichem Inc., 2009).
  • E. Cances, B. Mennucci, and J. Tomasi, “A New Integral Equation Formalism for the Polarizable Continuum Model: Theoretical Background and Applications to Isotropic and Anisotropic Dielectrics,” The Journal of Chemical Physics 107, no. 8 (1997) : 3032–41.
  • M. J. Dewar, E. G. Zoebisch, E. F. Healy, and J. J. Stewart, “Development and Use of Quantum Mechanical Molecular Models. 76. AM1: A New General Purpose Quantum Mechanical Molecular Model,” Journal of the American Chemical Society 107, no. 13 (1985) : 3902–9.
  • T. Lu, and F. Chen, “Multiwfn: A Multifunctional Wavefunction Analyzer,” Journal of Computational Chemistry 33, no. 5 (2012) : 580–92.
  • J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Physical Review Letters 77, no. 18 (1996): 3865–8.
  • P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, et al. “Quantum Espresso: A Modular and Open-Source Software Project for Quantum Simulations of Materials,” Journal of Physics. Condensed Matter 21, no. 39 (2009): 395502.
  • G. M. Sheldrick, “ SHELXT - Integrated Space-Group and Crystal-Structure Determination ,” Acta Crystallographica Section A 71, no. Pt 1 (2015) : 3–8.
  • G. M. Sheldrick, “Crystal Structure Refinement with Shelxl,” Acta Crystallographica Section C: Structural Chemistry 71, no. 1 (2015) : 3–8.
  • O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. Howard, and H. Puschmann, “OLEX2: A Complete Structure Solution, Refinement and Analysis Program,” Journal of Applied Crystallography 42, no. 2 (2009) : 339–41.
  • T. Karakurt, A. Cukurovali, and İ. Kani, “Structure of 2-(2-(Anthracen-9-Ylmethylene) Hydrazinyl)-4-(3-Methyl-3-Phenylcyclobutyl) Thiazole by Combined X-Ray Crystallographic and Molecular Modelling Studies,” Molecular Physics 118, no. 15 (2020) : e1718224.
  • T. Karakurt, M. Dinçer, and A. Cukurovali, “Syntheses, Spectral Characterization, Single Crystal X-Ray Diffraction and Computational in Gas and Solid Phases Studies on Chloro-Acetic Acid N′-(2-Hydroxy-Naphthalen-1-Ylmethylene)-N-[4-(3-Methyl-3-Phenyl-Cyclobutyl)-Thiazol-2-yl]-Hydrazide,” SN Applied Sciences 2, no. 4 (2020) : 1–16.
  • T. Karakurt, A. Cukurovali, N. T. Subasi, A. Onaran, A. Ece, S. Eker, and I. Kani, “Experimental and Theoretical Studies on Tautomeric Structures of a Newly Synthesized 2, 2′(Hydrazine-1, 2-Diylidenebis (Propan-1-yl-1-Ylidene)) Diphenol,” Chemical Physics Letters 693 (2018) : 132–45.
  • A. Filarowski, A. Koll, and T. Głowiak, “Structure and Hydrogen Bonding in Ortho-Hydroxy Ketimines,” Journal of Molecular Structure 644, no. 1–3 (2003) : 187–95.
  • M. Kabak, A. Elmali, Y. Elerman, and I. Svoboda, “Conformations and Structures of N, N’-Bis (2-Methoxybenzylidene)-1, 3-Diamino-Propanol and N, N’-Bis (3-Methoxybenzylidene)-1, 3-Diamino-Propanol,” Zeitschrift Für Naturforschung B 58, no. 11 (2003) : 1141–6.
  • T. Karakurt, “Investigation of the Molecular Structure of 4-(3-methyl-3-phenylcyclobutyl)-2-[2-(3-methylbenzylidene)hydrazinyl]thiazole in the gas and solid phases,” Acta Crystallographica Section C, Structural Chemistry 74, no. Pt 11 (2018): 1502–8.
  • F. H. Allen, “The Geometry of Small Rings. VI. Geometry and Bonding in Cyclobutane and Cyclobutene,” Acta Crystallographica Section B Structural Science 40, no. 1 (1984) : 64–72.
  • T. Karakurt, M. Dinçer, A. Çukurovalı, and İ. Yılmaz, “Ab Initio and Semi-Empirical Computational Studies on 5-Hydroxy-4-Methyl-5, 6-di-Pyridin-2-yl-4, 5-Dihydro-2H,” Journal of Molecular Structure 991, no. 1–3 (2011) : 186–201.
  • D. Sajan, H. Joe, V. Jayakumar, and J. Zaleski, “Structural and Electronic Contributions to Hyperpolarizability in Methyl p-Hydroxy Benzoate,” Journal of Molecular Structure 785, no. 1–3 (2006) : 43–53.
  • A. Cukurovali, and T. Karakurt, “Synthesis, Spectroscopic, X-Ray Diffraction and Tautomeric Properties of 5-(Diethylamino)-2-((2-(5-(3-Methyl-3-Phenylcyclobutyl)-6H-1, 3, 4-Thiadiazin-2yl) Hydrazono) Methyl) Phenol: A Combined Experimental and Theoretical Study,” Journal of Molecular Structure 1189 (2019) : 328–37.
  • T. Karakurt, A. Cukurovali, N. T. Subasi, and I. Kani, “Molecular Structure and Computational Studies on 2-((2-(4-(3-(2, 5-Dimethylphenyl)-3-Methylcyclobutyl) Thiazol-2-yl) Hydrazono) Methyl) Phenol Monomer and Dimer by DFT Calculations,” Journal of Molecular Structure 1125 (2016) : 433–42.
  • V. K. Rastogi, M. A. Palafox, R. P. Tanwar, and L. Mittal, Spectrochimica Acta A 58, no. 9 (2002): 1987-2004.
  • M. Silverstein, G.C. Basseler, C. Morill, Spectrometric Identification of Organic compounds (New York: Wiley, 1981).
  • T. Karakurt, M. Dinçer, I. Yılmaz, and A. Čukurovalı, “1-{(2E)-2-[(Aminocarbonothioyl) Hydrazono]-2-(3-Mesityl-3-Methylcyclobutyl) Ethyl} Pyrrolidine-2, 5-Dione,” Acta Crystallographica Section E Structure Reports Online 59, no. 12 (2003) : o1997–o1999.
  • R. Ditchfield, “Molecular Orbital Theory of Magnetic Shielding and Magnetic Susceptibility,” The Journal of Chemical Physics 56, no. 11 (1972) : 5688–91.
  • K. Wolinski, J. F. Hinton, and P. Pulay, “Efficient Implementation of the Gauge-Independent Atomic Orbital Method for NMR Chemical Shift Calculations,” Journal of the American Chemical Society 112, no. 23 (1990) : 8251–60.
  • F.A. Cotton, G. Wilkinson, C.A. Murillo, M. Bochmann, R. Grimes, Advanced Inorganic Chemistry (New York: Wiley, 1988).
  • S. R. Salman, S. H. Shawkat, and G. M. Al-Obaidi, “Tautomerism in Chlorinated O-Hydroxyschiff Bases: Effect of Chlorine Atom Substitution,” Spectroscopy Letters 22, no. 10 (1989) : 1265–73.
  • M. Yıldız, Z. Kılıç, and T. Hökelek, “Intramolecular Hydrogen Bonding and Tautomerism in Schiff Bases. Part I. Structure of 1, 8-di [N-2-Oxyphenyl-Salicylidene]-3, 6-Dioxaoctane,” Journal of Molecular Structure. 441, no. 1 (1998) : 1–10.
  • A. Ramamoorthy, C. Wu, and S. Opella, “Magnitudes and Orientations of the Principal Elements of the 1H Chemical Shift, 1H− 15N Dipolar Coupling, and 15N Chemical Shift Interaction Tensors in 15Nε1-Tryptophan and 15Nπ-Histidine Side Chains Determined by Three-Dimensional Solid-State NMR Spectroscopy of Polycrystalline Samples,” Journal of the American Chemical Society 119, no. 43 (1997) : 10479–86.
  • S. Klod, and E. Kleinpeter, “Ab Initio Calculation of the Anisotropy Effect of Multiple Bonds and the Ring Current Effect of Arenes—Application in Conformational and Configurational Analysis,” Journal of the Chemical Society, Perkin Transactions 2, no. 10 (2001) : 1893–8.
  • E. Kleinpeter, and A. Koch, “Identification of Benzenoid and Quinonoid Structures by through-Space NMR Shieldings (TSNMRS),” The Journal of Physical Chemistry A 114, no. 18 (2010) : 5928–31.
  • E. Kleinpeter, S. Klod, and A. Koch, “Endohedral and External Through-Space Shieldings of the Fullerenes C50, C60, c60(-6), c70, and c70(-6)-Visualization of (Anti)Aromaticity and their Effects on the Chemical Shifts of Encapsulated Nuclei,” The Journal of Organic Chemistry 73, no. 4 (2008) : 1498–507.
  • M. Baranac-Stojanovic, and E. Kleinpeter, “Quantification of the Aromaticity of 2-alkylidenethiazolines subjected to push-pull activity ,” The Journal of Organic Chemistry 76, no. 10 (2011) : 3861–71.
  • T. Lu and F. Chen, “Multiwfn: A Multifunctional Wavefunction Analyzer,” Journal of Computational Chemistry, 33 (2012): 580–592.
  • S. R. Salman, and F. S. Kamounah, “Mass Spectral Study of Tautomerism in Some 1-Hydroxy-2-Naphthaldehyde Schiff Bases,” Spectroscopy Letters 35, no. 3 (2002) : 327–35.
  • B. Chattopadhyay, S. Basu, P. Chakraborty, S. K. Choudhuri, A. K. Mukherjee, and M. Mukherjee, “Synthesis, Spectroscopic Characterization, X-Ray Powder Structure Analysis, DFT Study and in Vitro Anticancer Activity of N-(2-Methoxyphenyl)-3-Methoxysalicylaldimine,” Journal of Molecular Structure 932, no. 1–3 (2009) : 90–6.
  • Z. Cai-Rong, L. Zi-Jiang, C. Yu-Hong, C. Hong-Shan, W. You-Zhi, and Y. Li-Hua, “DFT and TDDFT Study on Organic Dye Sensitizers D5, DST and DSS for Solar Cells,” Journal of Molecular Structure: THEOCHEM 899, no. 1–3 (2009) : 86–93.
  • F. F. Jian, P. S. Zhao, Z. S. Bai, and L. Zhang, “Quantum Chemical Calculation Studies on 4-Phenyl-1-(Propan-2-Ylidene) Thiosemicarbazide,” Structural Chemistry 16, no. 6 (2005) : 635–9.
  • Z. Hayvali, M. Hayvali, Z. Kiliç, T. Hökelek, and E. Weber, “New Benzo-15-Crown-5 Ethers Featuring Salicylic Schiff Base Substitutions–Synthesis, Complexes and Structural Study,” Journal of Inclusion Phenomena and Macrocyclic Chemistry 45, no. 3/4 (2003) : 285–94.
  • J. Fleming, Frontier Orbitals and Organic Chemical Reactions (London: John Wiley, 1976).
  • T. Karakurt, M. Dinçer, A. Cetin, and M. Sekerci, “Molecular Structure and Vibrational Bands and Chemical Shift Assignments of 4-allyl-5-(2-hydroxyphenyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione by DFT and Ab Initio HF Calculations,” Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy 77, no. 1 (2010) : 189–98.
  • R. G. Parr, R. A. Donnelly, M. Levy, and W. E. Palke, “Electronegativity: The Density Functional Viewpoint,” The Journal of Chemical Physics 68, no. 8 (1978) : 3801–7.
  • R. G. Parr, and R. G. Pearson, “Absolute Hardness: companion Parameter to Absolute Electronegativity,” Journal of the American Chemical Society 105, no. 26 (1983) : 7512–6.
  • W. Yang, and R. G. Parr, “Hardness, Softness, and the Fukui Function in the Electronic Theory of Metals and Catalysis,” Proceedings of the National Academy of Sciences of the United States of America 82, no. 20 (1985) : 6723–6.
  • K. O. Sulaiman, and A. T. Onawole, “Quantum Chemical Evaluation of the Corrosion Inhibition of Novel Aromatic Hydrazide Derivatives on Mild Steel in Hydrochloric Acid,” Computational and Theoretical Chemistry 1093, (2016) : 73–80.
  • I. Lukovits, E. Kalman, and F. Zucchi, “Corrosion Inhibitors—Correlation between Electronic Structure and Efficiency,” Corrosion 57, no. 1 (2001) : 3–8.
  • R. G. Pearson, “Absolute Electronegativity and Hardness: Application to Inorganic Chemistry,” Inorganic Chemistry 27, no. 4 (1988) : 734–40.
  • S. Martinez, “Inhibitory Mechanism of Mimosa Tannin Using Molecular Modeling and Substitutional Adsorption Isotherms,” Materials Chemistry and Physics. 77, no. 1 (2003) : 97–102.
  • G. Gece, and S. Bilgiç, “A Theoretical Study of Some Hydroxamic Acids as Corrosion Inhibitors for Carbon Steel,” Corrosion Science 52, no. 10 (2010) : 3304–8.
  • R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules (New York, NY: Oxford University Press, 1989).
  • H. Wang, X. Wang, H. Wang, L. Wang, and A. Liu, “DFT Study of New Bipyrazole Derivatives and Their Potential Activity as Corrosion Inhibitors,” Journal of Molecular Modeling 13, no. 1 (2007) : 147–53.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.