237
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Triazoloquinolines II: Synthesis, Reactions, and Pharmacological Properties of [1,2,4]Triazoloquinoline and 1,2,4-Triazoloisoquinoline Derivatives

, , & ORCID Icon
Pages 13-53 | Received 22 Nov 2020, Accepted 07 Nov 2021, Published online: 06 Dec 2021

References

  • A. Kumar, K. Srivastava, R. Kumar, S. K. Puri, and P. M. S. Chauhan, “Synthesis of New 4-Aminoquinolines and Quinoline-acridine Hybrids as Antimalarial Agents,” Bioorganic & Medicinal Chemistry Letters 20, no. 23 (2010): 7059–63.
  • R. Arancibia, F. Dubar, B. Pradines, I. Forfar, D. Dive, A. H. Klahn, and C. Biot, “Synthesis and Antimalarial Activities of Rhenium Bioorganometallics Based on the 4-Aminoquinoline Structure,” Bioorganic & Medicinal Chemistry 18, no. 22 (2010): 8085–91.
  • P. A. Leatham, H. A. Bird, V. Wright, D. Seymour, and A. Gordon, “A Double-Blind Study of Antrafenine, Naproxen and Placebo in Osteoarthrosis,” European Journal of Rheumatology and Inflammation 6, no. 2 (1983): 209–11.
  • Denny, W.A.; Wilson, W.R.; Ware, D.C.; Atwell, G. J.; Milbank, J. B.; Stevenson, R. J. “Anti-Cancer 2,3-dihydro-1H-pyrrolo[3,2-f]quinoline Complexes of Cobalt and Chromium” (US Patent 7,064,117 B2, June 20, 2006).
  • V. R. Solomon, C. Hu, and H. Lee, “Design and Synthesis of anti-Breast Cancer Agents from 4-Piperazinylquinoline: A Hybrid Pharmacophore Approach,” Bioorganic & Medicinal Chemistry 18, no. 4 (2010): 1563–72.
  • A. Mahamoud, J. Chevalier, A. Davin-Regli, J. Barbe, and J. M. Pages, “Quinoline Derivatives as Promising Inhibitors of Antibiotic Efflux Pump in Multidrug Resistant Enterobacter Aerogenes Isolates,” Current Drug Targets 7, no. 7 (2006): 843–7.
  • W. D. Wilson, M. Zhao, S. E. Patterson, R. L. Wydra, L. Janda, and L. Strekowski, “Design of RNA Interactive Anti-HIV Agents: Unfused Aromatic Intercalators,” Medicinal Chemistry Research 2, (1992): 102–10.
  • L. Strekowski, J. L. Mokrosz, V. A. Honkan, A. Czarny, M. T. Cegla, R. L. Wydra, S. E. Patterson, and R. F. Schinazi, “Synthesis and Quantitative Structure-activity Relationship Analysis of 2-(aryl or heteroaryl)quinolin-4-amines, a New Class of Anti-HIV-1 Agents,” Journal of Medicinal Chemistry 34, no. 5 (1991): 1739–46.
  • R. C. Bernotas, R. R. Singhaus, D. H. Kaufman, J. M. Travins, J. W. Ullrich, R. Unwalla, E. Quinet, P. Evans, A. Nambi, B. Olland, et al. “4-(3-Aryloxyaryl) Quinoline Sulfones Are Potent Liver X Receptor Agonists,” Bioorganic and Medicinal Chemistry Letters 20, no. 1 (2010): 209–12.
  • S. Gemma, S. Butini, G. Campiani, M. Brindisi, S. Zanoli, M. P. Romano, P. Tripaldi, L. Savini, I. Fiorini, G. Borrelli, et al. “Discovery of Potent Nucleotide-Mimicking Competitive Inhibitors of Hepatitis C Virus NS3 Helicase,” Bioorganic & Medicinal Chemistry Letters 21, no. 9 (2011): 2776–9.
  • F. Sliman, M. Blairvacq, E. Durieu, L. Meijer, J. Rodrigo, and D. Desmaële, “Identification and Structure-activity Relationship of 8-hydroxy-quinoline-7-carboxylic Acid Derivatives as Inhibitors of Pim-1 kinase,” Bioorganic & Medicinal Chemistry Letters 20, no. 9 (2010): 2801–5.
  • Y. Yang, L. Shi, Y. Zhou, H. Q. Li, Z. W. Zhu, and H. L. Zhu, “Design, Synthesis and Biological Evaluation of Quinoline Amide Derivatives as Novel VEGFR-2 Inhibitors,” Bioorganic & Medicinal Chemistry Letters 20, no. 22 (2010): 6653–6.
  • N. Ulusoy, A. Gursoy, and G. Otuk, “Synthesis and Antimicrobial Activity of Some 1, 2, 4-Triazole-3-Mercaptoacetic Acid Derivatives,” Farmaco (Societa Chimica Italiana: 1989) 56, no. 12 (2001): 947–52.
  • S. Papakostantinou, N. Garoufalias, P. Pouli, A. Marakos, and A. C. Ladas, “Synthesis Antimicrobial and Antifungal Activity of Some New 3-Substituted Derivatives of 4-(2,4-Dichlorophenyl)-5-Adamantyl-1H-1,2,4-Triazole,” Farmaco (Societa Chimica Italiana: 1989) 57, no. 12 (2002): 973–7.
  • I. I. Kucukguzel, S. G. Kucukguzel, S. Rollas, and M. Kiraz, “Some 3-Thioxo/Alkylthio-1,2,4-Triazoles with a Substituted Thiourea Moiety as Possible Antimycobacterials,” Bioorganic & Medicinal Chemistry Letters 11, no. 13 (2001): 1703–7.
  • N. B. Patel, I. H. Khan, and S. D. Rajani, “Pharmacological Evaluation and Characterizations of Newly Synthesized 1,2,4-triazoles,” European Journal of Medicinal Chemistry 45, no. 9 (2010): 4293–9.
  • M. Shiradkar, G. V. S. Kumar, V. Dasari, S. Tatikonda, K. C. Akula, and R. Shah, “Clubbed Triazoles: A Novel Approach to Antitubercular Drugs,” European Journal of Medicinal Chemistry 42, no. 6 (2007): 807–16.
  • S. S. Parmar, G. A. K. Gupta, H. H. Singh, and T. K. Gupta, “Benzimidazolyl-1,2,4(H)-Triazoles as Central Nervous System Depressants,” Journal of Medicinal Chemistry 15, no. 9 (1972): 999–1000.
  • L. C. Wang, C. H. Tu, J. H. Wang, and G. H. Lee, “Synthesis and Molecular Structure of 6-amino-3-benzylmercapto-1,2,4-triazolo[3,4-f][1,2,4]triazin-8(7H)-one,” Molecules (Basel, Switzerland) 11, no. 2 (2006): 169–76.
  • G. Turan-Zitouni, Z. A. Kaplancikli, A. Ozdemir, P. Chevallet, H. B. Kandilci, and B. Gümüsel, “Studies on 1,2,4-triazole Derivatives as Potential Anti-inflammatory Agents,” Archiv Der Pharmazie 340, no. 11 (2007): 586–90.
  • B. Shivarama Holla, B. Veerendra, M. K. Shivananda, and B. Poojary, “Synthesis Characterization and Anticancer Activity Studies on Some Mannich Bases Derived from 1,2,4-Triazoles,” European Journal of Medicinal Chemistry 38, no. 7–8 (2003): 759–67.
  • S. S. Parmar, M. Chaudhary, S. K. Chaudhary, S. Kumar, and H. R. Spiro, “Anticonvulsant Activity and Selective Inhibition of NAD-dependent Oxidations in Rat Brain Homogenates by Newer Mercaptotriazoles,” Journal of Pharmaceutical Sciences 66, no. 7 (1977): 971–5.
  • S. Borg, G. Estenne-Bouhtou, K. Luthman, I. Csoeregh, W. Hesselink, and U. Hacksell, “Synthesis of 1,2,4-Oxadiazole-, 1,3,4-Oxadiazole-, and 1,2,4-Triazole-Derived Dipeptidomimetics,” The Journal of Organic Chemistry 60, no. 10 (1995): 3112–20.
  • C. Chen, R. Dagnino, C. Q. Huang, J. R. McCarthy, and D. E. Grigoriadis, “1-Alkyl-3-Amino-5-Aryl-1H-[1, 2, 4] Triazoles: Novel Synthesis via Cyclization of N-Acyl-S-Methylisothioureas with Alkylhydrazines and Their Potent corticotropin-Releasing Factor-1 (CRF1) Receptor Antagonist Activities,” Bioorganic and Medicinal Chemistry Letters 11, no. 24 (2001): 3165–8.
  • S. K. Thompson, A. M. Eppley, J. S. Frazee, M. G. Darcy, R. T. Lum, T. A. Tomaszek, L. A. Ivanoff, J. F. Morris, E. J. Sternberg, D. M. Lambert, et al. “Synthesis and Antiviral Activity of a Novel Class of HIV-1 Protease Inhibitors Containing a Heterocyclic P1′-P2′ Amide Bond Isostere,” Bioorganic and Medicinal Chemistry Letters 4, no. 20 (1994): 2441–6.
  • B. Abarca, R. Ballesteros, M. Elmasnaouy, P. D’Ocón, M. D. Ivorra, and M. Valiente, “Evaluation and Synthesis of 7-Arylhydroxymethyltriazolopyridines as Potential Cardiovascular Agents,” ARKIVOC 2002, no. 10 (2002): 9–13.
  • M. Siu, R. Pastor, W. Liu, K. Barrett, M. Berry, W. S. Blair, C. Chang, J. Z. Chen, C. Eigenbrot, N. Ghilardi, et al. “2-Amino-[1,2,4]triazolo[1,5-a]pyridines as JAK2 Inhibitors,” Bioorganic & Medicinal Chemistry Letters 23, no. 17 (2013): 5014–21.
  • Y. Yoshimura, K. Tomimatsu, T. Nishimura, A. Miyake, and N. Hashimoto, “Studies on Condensed-heterocyclic Azolium cephalosporins. V. Synthesis and Antibacterial Activity of 3-(Condensed-triazolo-pyridinium, -pyrimidinium, and -pyridazinium)-methyl Cephalosporins,” The Journal of Antibiotics 45, no. 5 (1992): 721–34.
  • M. Giroud, B. Kuhn, S. Saint-Auret, C. Kuratli, R. Martin, F. Schuler, F. Diederich, M. Kaiser, R. Brun, T. Schirmeister, et al. “2 H-1,2,3-Triazole-Based Dipeptidyl Nitriles: Potent, Selective, and Trypanocidal Rhodesain Inhibitors by Structure-Based Design,” Journal of Medicinal Chemistry 61, no. 8 (2018): 3370–88.
  • E. C. Lawson, W. J. Hoekstra, M. F. Addo, P. Andrade-Gordon, B. P. Damiano, J. A. Kauffman, J. A. Mitchell, and B. E. Maryanoff, “1, 2, 4-Triazolo [3, 4-a] Pyridine as a Novel, Constrained Template for Fibrinogen Receptor (GPIIb/IIIa) Antagonists,” Bioorganic & Medicinal Chemistry Letters 11, no. 19 (2001): 2619–22.
  • A. S. Kalgutkar, H. L. Hatch, F. Kosea, H. T. Nguyen, E. F. Choo, K. F. McClure, T. J. Taylor, K. R. Henne, A. V. Kuperman, M. A. Dombroski, et al. “Preclinical Pharmacokinetics and Metabolism of 6-(4-(2,5-difluorophenyl)oxazol-5-yl)-3-isopropyl-[1,2,4]-triazolo[4,3-a]pyridine, a Novel and Selective p38alpha Inhibitor: Identification of an Active Metabolite in Preclinical Species and Human Liver Microsomes,” Biopharmaceutics & Drug Disposition 27, no. 8 (2006): 371–86.
  • K. F. McClure, Y. A. Abramov, E. R. Laird, J. T. Barberia, W. Cai, T. J. Carty, S. R. Cortina, D. E. Danley, A. J. Dipesa, K. M. Donahue, et al. “Theoretical and Experimental Design of Atypical Kinase Inhibitors: Application to p38 MAP Kinase,” Journal of Medicinal Chemistry 48, no. 18 (2005): 5728–37.
  • J. B. Polya, and M. Woodruff, “Hydroxyphenylazo-1,2,4-Triazoles,” Australian Journal of Chemistry 26, no. 7 (1973): 1585–90.
  • C. Calzolari, and L. Favretto, “Application of 1-Phenyl-4-Phenylamino-1,2,4-Triazolium Chloride to the Determination of Cobalt (II),” The Analyst 93, no. 1109 (1968): 494–7.
  • M. Mokotoff, M. Zhao, S. M. Roth, J. A. Shelley, J. N. Slavoski, and N. M. Kouttab, “Thymosin-like Peptides as Potential Immunostimulants. Synthesis via the Polymeric-Reagent Method,” Journal of Medicinal Chemistry 33, no. 1 (1990): 354–60.
  • Y. Wu, L. X. Ma, T. W. Niu, F. L. Meng, X. Cui, and H. R. Piao, “Synthesis and Positive Inotropic Evaluation of (E)-2-(4-Cinnamylpiperazin-1-yl)-N-(1-Substituted-4,5-Dihydro-[1,2,4]Triazolo[4,3-a]Quinolin-7-yl)Acetamides,” Archiv Der Pharmazie 345, no. 12 (2012): 980–8.
  • Y. Wu, L. X. Ma, T. W. Niu, X. Cui, and H. R. Piao, “Synthesis and Positive Inotropic Evaluation of N-(1-Oxo-1,2,4,5-Tetrahydro-[1,2,4]Triazolo[4,3-a]Quinolin-7-yl)Acetamides Bearing Piperazine and 1,4-Diazepane Moieties,” Bioorganic & Medicinal Chemistry Letters 22, no. 13 (2012): 4229–32.
  • B. J. Ye, X. K. Liu, S. M. Jiang, X. Cui, and H. R. Piao, “Synthesis of 2-(4-substitutedbenzyl-[1,4]diazepan-1-yl)-n-(1-methyl-4,5-dihydro-[1,2,4]triazolo[4,3-a]quinolin-7-yl)Acetamides as Inotropic Agents,” Chemical Biology & Drug Design 77, no. 1 (2011): 98–103.
  • H. Piao, C. Zhang, Z. Quan, and J. Li, “Preparation of 4,5-Dihydro-[1,2,4]Triazolo[4,3-a]Quinoline Derivatives as Inotropic Agent,” Faming Zhuanli Shenqing (2009): 20090624.
  • J. Y. Liu, H. L. Yu, Z. S. Quan, X. Cui, and H. R. Piao, “Synthesis and Inotropic Evaluation of 1-substituted-N-(4,5-Dihydro-1-Methyl-[1,2,4]Triazolo[4,3-a]Quinolin-7-yl)Piperidine-4-Carboxamides,” Bioorganic & Medicinal Chemistry Letters 19, no. 9 (2009): 2392–5.
  • J. Y. Li, X. Cui, X. K. Liu, L. Hong, Z. S. Quan, and H. R. Piao, “Synthesis and Positive Inotropic Evaluation of 2-(4-(4-Substituted Benzyloxy)-3-Methoxybenzyl)-1,4-Diazepan-1-yl)-N-(4,5-Dihydro-1-Methyl[1,2,4]Triazolo[4,3-a]Quinolin-7-yl)-Acetamides,” Archiv Der Pharmazie 341, no. 12 (2008): 794–9.
  • B. N. Reddy, P. V. G. Reddy, P. S. Reddy, S. M. Reddy, S. R. S. Reddy, and M. Pathak, “Synthesis of New 4,5-Dihydro-1-Methyl-[1,2,4]Triazolo[4,3-a]Quinolin-7-amine-Derived Ureas and Their Anticancer Activity,” Synthetic Communications 45, no. 7 (2015): 831–7.
  • S. M. Bhalekar, and H. M. Parab, “Synthesis of New Heterocyclic Compounds Derived from 2-(2, 4-Dichloroquinolin-6-yl)-4H-1-Benzopyran-4-One and Their Biological Evaluation,” Indian Journal of Heterocyclic Chemistry 20, no. 4 (2011): 301–4.
  • C. X. Wei, X. Q. Deng, K. Y. Chai, Z. G. Sun, and Z. S. Quan, “Synthesis and Anticonvulsant Activity of 1-Formamide-Triazolo[4,3-a]Quinoline Derivatives,” Archives of Pharmacal Research 33, no. 5 (2010): 655–62.
  • L. J. Guo, C. X. Wei, J. H. Jia, L. M. Zhao, and Z. S. Quan, “Design and Synthesis of 5-Alkoxy-[1,2,4]Triazolo[4,3-a]Quinoline Derivatives with Anticonvulsant Activity,” European Journal of Medicinal Chemistry 44, no. 3 (2009): 954–8.
  • L. P. Guan, Q. H. Jin, S. F. Wang, F. N. Li, and Z. S. Quan, “Synthesis and Anticonvulsant Activity of 5-Phenyl-[1,2,4]-Triazolo[4,3-a]Quinolines,” Archiv Der Pharmazie 341, no. 12 (2008): 774–9.
  • C. X. Wei, F. N. Li, L. X. Zhao, L. M. Zhao, and Z. S. Quan, “Synthesis of 2-substituted-7-Heptyloxy-4,5-dihydro-[1,2,4]-triazolo[4,3-a]quinolin-1(2H)-ones with Anticonvulsant Activity,” Archiv Der Pharmazie 340, no. 9 (2007): 491–5.
  • X. Y. Sun, Y. Z. Jin, F. N. Li, G. Li, K. Y. Chai, and Z. S. Quan, “Synthesis of 8-Alkoxy-4,5-Dihydro-[1,2,4]Triazole[4,3-a]Quinoline-1-Ones and Evaluation of Their Anticonvulsant Properties,” Archives of Pharmacal Research 29, no. 12 (2006): 1080–5.
  • P. Desos, G. Schlewer, and C. G. Wermuth, “Synthesis of Triazolo- and Tetrazoloquinoline Derivatives with Antithrombotic Activity,” Heterocycles 28, no. 2 (1989): 1085–99.
  • L. V. Grishchuk, E. I. Ivanov, G. M. Turyans'ka, O. V. Mazepa, and N. O. Elins'ka, “Fabiyans’ka, I.V. Synthesis and the Antibacterial Activity of Derivatives 1,2-Dihydroquinolin-2-One,” ZOFKAM Zhurnal Organichnoi ta Farmatsevtichnoi Khimii 7, no. 1 (2009): 53–8.
  • J. A. Hassanin, E. S. I. Ibrahim, M. A. Zein, M. R. Aouad, and E. S. H. El Ashry, “Synthesis of Functionalized 7-Chloro-1,2,4-Triazolo[4,3-a]Quinoline,” Heterocyclic Communications 13, no. 1 (2007): 57–65.
  • A. K. Sadana, Y. Mirza, K. R. Aneja, and O. Prakash, “Hypervalent Iodine Mediated Synthesis of 1-Aryl/Hetaryl-1,2,4-Triazolo[4,3-a]Pyridines and 1-Aryl/Hetaryl-5-Methyl-1,2,4-Triazolo[4,3-a]Quinolines as Antibacterial Agents,” European Journal of Organic Chemistry 38, no. 5 (2003): 533–6.
  • O. A. El-Sayed, M. A. El-Semary, and M. A. Khalil, “Synthesis and Antimicrobial Evaluation of Novel Quinoline-3-Carboxylic Acids and Triazolo[4,3-a]Quinoline-4-Carboxylic Acids,” Alexandria Journal of Pharmaceutical Sciences 7, no. 2 (1993): 163–6.
  • M. A. Khalil, N. S. Habib, A. M. Farghaly, and O. A. El-Sayed, “Synthesis, Antimicrobial, Inotropic, and Chronotropic Activities of Novel 1,2,4-Triazolo[4,3-a]Quinolines,” Archiv der Pharmazie 324, no. 4 (1991): 249–53.
  • B. A. Dreikorn, and K. E. Kramer, “Combating Phytopathogenic Organisms with s-Triazolo[4,3-a]Quinolines,” Ger Offen, DE 2239892 A1 19730301 (1973) March 01.
  • X. Y. Sun, C. X. Wei, K. Y. Chai, H. R. Piao, and Z. S. Quan, “Synthesis and Anti-inflammatory Activity Evaluation of Novel 7-alkoxy-1-amino-4,5-dihydro[1,2,4]triazole[4,3-a]quinolines,” Archiv Der Pharmazie 341, no. 5 (2008): 288–93.
  • L. Savini, L. Chiasserini, C. Pellerano, W. Filippelli, and G. Falcone, “Synthesis and Pharmacological Activity of 1,2,4-Triazolo[4,3-a]Quinolines,” Il Farmaco 56, no. 12 (2001): 939–45.
  • A. I. Mikhalev, M. E. Kon'shin, V. E. Kolla, F. Y. Nazmetdinov, and M. I. Vakhrin, “Synthesis and Antiinflammatory Activity of 2-Substituted Cinchoninic and 1,2,4-Triazolo[4,3-a]Quinoline-5-Carboxylic Acid Amides,” Khim.-Farm Zh 31, no. 11 (1997): 33–4.
  • Yanborosova, O.A.; Kon'shina, T.M.; Zaks, A.S.; Mikhalev, A.I.; Kon'shin, M.E. Preparation and Pharmacological Activity of Amides of 2-hydrazocinchoninic, 1,2,4-triazolo[4,3-a]-, and 1,2,3,4-tetrazolo[4,3-a]Quinoline-9-carboxylic Acids. Khim-Farm Zh 30, no. 3 (1996): 52–3.
  • O. A. Yanborisova, V. E. Kolla, S. A. Vikhareva, and M. E. Konshin, “Synthesis, Analgesic and Antiinflammatory Activity of 2-Hydrazinocinchoninic and 1,2,4-Triazolo[4,3-a]Quinoline-9-Carboxylic Acid Amide Derivatives,” Khim-Farm Zh 25, no. 2 (1991): 24–6.
  • V. Oza, S. Ashwell, P. Brassil, J. Breed, J. Ezhuthachan, C. Deng, M. Grondine, C. Horn, D. F. Liu, P. Lyne, et al. “Synthesis and Evaluation of Triazolones as Checkpoint Kinase 1 Inhibitors,” Bioorganic & Medicinal Chemistry Letters 22, no. 6 (2012): 2330–7.
  • D. F. Morrow, “Triazoloquinolones” (US Patent, February 24, 1981, 252–806).
  • J. B. Hester, “2-[(3-Phthalimidomethyl)-5-Methyl-4H-1,2,4-Triazol-4-yl]Benzophenones” (US Patent 3993, November 23, 1976, 660).
  • J. B. Hester, “Certain 2-(3-Substituted-4H-1,2,4-Triazol-4-yl)-α-Phenylbenzylamines” (US Patent November 13, 1973, 772–317).
  • P. Blurton, F. Burkamp, and S. R. Fletcher, “Preparation of Triazolophthalazines, Quinolines and Isoquinolines as Ligands for GABAa Receptors Containing the α-5 Subtype,” PCT Int. Appl WO 2002081474 A1 20021017, (2002).
  • S. Maki, T. Fushimi, A. Miyake, and T. Kamikaze, “Triazole Derivatives,” Japan Tokkyo Koho (1974): 19740201.
  • R. E. Khidre, I. A. M. Radini, T. A. Ameen, and A. A. M. Abdelgawad, “Triazoloquinolines I: Synthesis, Reactions and Pharmacological Properties of [1,2,3]Triazoloquinoline Derivatives,” Current Organic Chemistry 25, no. 8 (2021): 876–93.
  • M. A. I. Salem, M. S. Behalo, and R. E. Khidre, “Synthesis, Reactions and Applications of Triazolopyrimidine Derivatives,” Mini-Reviews in Organic Chemistry (2020) doi:10.2174/1570193X18666210203155358.
  • R. E. Khidre, T. A. Ameen, and M. A. I. Salem, “Tetrazoloquinolines: Synthesis, Reactions, and Applications,” Current Organic Chemistry 24, no. 4 (2020): 439–64.
  • R. E. Khidre, I. A. M. Radini, M. S. Mostafa, and T. A. Ameen, “Synthetic Applications of 2-Diazo-1,3-Indanedione,” Indian Journal of Heterocyclic Chemistry 29, (2019): 167–79.
  • R. E. Khidre, I. A. M. Radini, and D. A. Ibrahim, “Synthetic Approaches of Pyrazolyl Quinolines. Mini-Reviews in Organic Chemistry 16, (2019): 353–60.
  • R. E. Khidre, and W. M. Abdou, “Wittig-Horner Reagents: Powerful Tools in the Synthesis of 5-and 6-Heterocyclic Compounds; Shedding Light on Their Application in Pharmaceutical Chemistry,” Turkish Journal of Chemistry 40, (2016): 225–47.
  • L. Grubert, W. Jugelt, H. J. Breß, H. Köppel, U. Strietzel, and A. Dombrowski, “Reactions of 1,3-Dipoles with Heterocycles. 8. Synthesis of 1,8a-Dihydro[1,2,4]Triazolo[4,3-a]Pyridines and Benzologs,” Liebigs Annalen Der Chemie 1992, no. 9 (1992): 885–94.
  • V. Evdokimoff, “Use of Hydrazone Chlorides in the Synthesis of Heterocycles. s-Triazolo[2,3-a]Quinoline,” Bollettino Chimico Farmaceutico 109, no. 4 (1970): 240–4.
  • S. Ito, A. Kakehi, T. Matsuno, and J. I. Yoshida, “The Preparation of 3-Phenyl [1,2,4]Triazolo [4,3-a] Pyridines and Their Benzologs from N-(Phenylsulfonyl) Benzohydrazonoyl Chloride and Pyridines,” Bulletin of the Chemical Society of Japan 53, no. 7 (1980): 2007–11.
  • S. B. Inturi, B. Kalita, and A. G. J. Ahamed, “Highly Efficient Synthesis of 4,3-Fused 1,2,4-Triazoles via One-Pot Multicomponent Domino Reaction Catalyzed by KI/TBHP,” Chemistryselect 2, no. 27 (2017): 8377–82.
  • A. Gelleri, A. Messmer, I. Pinter, and L. Radics, “Condensed Azolium Salts. IV. Synthesis of 1,3-Diaryl-s-Triazolo[4,3-a]Pyridinium Salts and Their Benzologes,” Journal Für Praktische Chemie 318, no. 6 (1976): 881–90.
  • J. J. Huang, K. L. Chen, Y. S. Lin, S. C. Yang, S. H. Chuang, K. C. Chiang, W. C. Tseng, F. F. Wong, and M. Y. Yeh, “Synthesis of 2-Aryl-2H-[1,2,4]Triazoloquinolin-3-One and 2-Aryl-2H-[1,2,4]Triazoloisoquinolin-3-One Derivatives from α-Chloroformylarylhydrazines Hydrochlorides,” Tetrahedron 66, no. 4 (2010): 930–4.
  • B. Al-Saleh, M. A. El-Apasery, and M. H. Elnagdi, “Synthesis of New Azolyl Azoles and Azinyl Azoles,” Journal of Heterocyclic Chemistry 42, no. 4 (2005): 483–6.
  • C. Zhang, H. Piao, and Z. Quan, “Synthesis of 4,5-Dihydro[1,2,4]Triazolo[4,3-a]Quinoline Derivatives,” Huaxue Yanjiu Yu Yingyong 14, no. 5 (2002): 618–19.
  • B. N. Reddy, P. V. G. Reddy, B. R. P. Reddy, S. R. S. Reddy, S. M. Reddy, and M. Pathak, “Novel 7-Nitro-1-(Piperidin-4-yl)-4,5-Dihydro-[1,2,4]Triazolo[4,3-a]Quinolinesulphonamide Derivatives as Antimicrobial Agents: Design, Synthesis, and Bio-Activity,” Journal of Heterocyclic Chemistry 53, no. 5 (2016): 1416–23.
  • L. A. Reiter, and G. E. Berg, “The Synthesis of Spirocyclic [1,2,4]Triazolo[4,3-a]Quinolines as Potential Ligands for the Benzodiazepine Receptor,” Heterocycles 34, no. 4 (1992): 771–80.
  • Z. F. Xie, K. Y. Chai, H. R. Piao, K. C. Kwak, and Z. S. Quan, “Synthesis and Anticonvulsant Activity of 7-alkoxyl-4,5-dihydro-[1,2,4]triazolo[4,3-a]quinolines,” Bioorganic & Medicinal Chemistry Letters 15, no. 21 (2005): 4803–5.
  • M. Gall, and J. B. Hester, “2-[3,5-Disubstituted-4H-1,2,4-Triazol-4-yl]Benzhydrol” (US Patent 1975, 3910943).
  • J. B. Hester, “Triazolyl Benzophenone Compounds” (US Patent, 1976, 4000151).
  • O. A. Yanborisova, M. E. Konshin, O. A. Yanborisova, and M. E. Konshin, “Synthesis of 1,2,4-Triazolo[4,3-a]Quinoline-9-, 1,2,3,4-Tetrazolo[4,3-a]Quinoline-9 and 1,2,4-Triazino[4,3-a]Quinoline-10-Carboxylic Acids from 2-Chloro- and 2-Hydrazinocinchoninic Acids,” Chemistry of Heterocyclic Compounds 27, no. 9 (1991): 986–8.
  • O. Y. Yanborisova, and M. E. Konshin, “Synthesis of Substituted 2-Hydrazino- and 2-(Β-Acylhydrazino)-Cinchoninic Acid Amides and Their Cyclization to 1,2,4-Triazolo[4,3-a]Quinoline-9-Carboxylic Acid Amides,” Chemistry of Heterocyclic Compounds 27, no. 4 (1991): 390–4.
  • T. Ramalingam, M. S. R. Murty, Y. V. D. Nageswar, and P. B. Sattur, “Synthesis of Some Fused Triazoloquinolines,” Journal of Heterocyclic Chemistry 27, no. 4 (1990): 981–2.
  • A. S. Krylov, A. A. Petrosian, J. L. Piterskaya, N. I. Svintsitskaya, and A. V. Dogadina, “Synthesis of ([1,2,4]Triazolo[4,3-a]Pyridin-3-Ylmethyl)Phosphonates and Their Benzo Derivatives via 5-Exo-Dig Cyclization,” Beilstein Journal of Organic Chemistry 15, (2019): 1563–8.
  • P. S. Ram, P. S. N. Reddy, and V. R. Srinivasan, “An Unusual Reaction of Dimethyl Acetylenedicarboxylate with s-Triazolopyridine and Its Quinoline Analog,” Indian Journal of Chemistry Section B: Organic Chemistry Including Medicinal Chemistry 20, Bno. 1 (1981): 10–3.
  • O. V. Singh, M. Muthukrishnan, and M. Sundaravadivelu, “Thallium(III) Salts in Heterocyclic Synthesis: Synthesis of 3-Aryl-9-Methyl-1,2,4-Triazolo[4,3-a]Quinolines,” Indian Journal of Chemistry Section B: Organic Chemistry Including Medicinal Chemistry 40B, no. 3 (2001): 262–5.
  • P. Kumar, “An Environmentally Benign and Solvent-Free Synthesis of 3-Aryl[1,2,4]Triazolo[4,3-a]Pyridines and 1-Aryl-5-Ethyl[1,2,4]Triazolo[4,3-a]Quinolines Using Phenyliodine Bis,” Chemistry of Heterocyclic Compounds 47, no. 10 (2012): 1237–43.
  • M. R. Devi, J. M. Rao, and V. R. Srinivasan, “Synthesis of Fused s-Triazoles by Photocyclization,” Synthetic Communications 19, no. 13–14 (1989): 2345–54.
  • R. Srinivasan, J. Sembian Ruso, N. S. Nagarajan, R. Senthil Kumaran, and G. Manickam, “A Convenient One-Pot Synthesis of Triazolopyridine and Related Heterocycle Fused-Triazole Analogs through Copper Catalyzed Oxidative Cyclization Strategy,” Journal of Heterocyclic Chemistry 53, no. 2 (2016): 606–14.
  • M. Hebenbrock, and J. Müller, “1H-[1,2,4]Triazolo[4,3-a]Pyridin-4-Ium and 3H-[1,2,4]Triazolo[4,3-a]Quinolin-10-Ium Derivatives as New Intercalating Agents for DNA,” Zeitschrift Für Naturforschung B 73, no. 11 (2018): 885–93.
  • V. S. Prabhu, and S. Seshadri, “Synthetic Utility of Hydrazine Derivatives: Synthesis of Different Heterocycles from 6-Chloro-2-Hydrazino-4-Phenylquinoline,” Indian Journal of Chemistry Section B: Organic Chemistry Including Medicinal Chemistry 24B, no. 2 (1985): 137–40.
  • A. I. Mikhalev, M. E. Kon’shin, and M. I. Vakhrin, “Synthesis of 2-Substituted Cinchoninic Acid Amides and Their Cyclization into 1,2,4-Triazolo[4,3-a]Quinoline-9- and 1,2,4-Triazino[4,3-a]Quinoline-10-Carboxylic Acid Amides,” Chemistry of Heterocyclic Compounds 33, no. 5 (1997): 609–13.
  • K. T. Potts, W. C. Dunlap, and F. S. Apple, “1,2,4-Triazoles. XXXIV. Photodimerization of Some 1,2,4-Triazo[4,3-a],” Chemischer Informationsdienst 8, no. 37 (1977): no–1271.
  • B. A. Dreikorn, and K. E. Kramer, “Agent for the Control of Plant-Pathogenic Organisms” (US Patent 953457, April 27, 1976)
  • T. Bany, A. Maliszewska-Guz, and B. Modzelewska-Banachiewicz, “Synthesis and Some Chemical Properties of 5-Hydroxy-s-Triazolo[4,3-a]Quinoline,” Chemischer Informationsdienst 6, no. 2 (1975): 1452.
  • D. H. Lee, J. Y. Lee, S. S. Kim, H. J. Kwon, C. H. Shin, and B. J. Jang, “Triazolophenanthridine and Related Compound as Organic Electronic Device Material, and Preparation Method Thereof,” Repub Korean Kongkae Taeho Kongbo (2013): 20131210.
  • I. A. Shehata, “Synthesis of Some Fused Quinoline Derivatives,” Monatshefte fur Chemie Chemical Monthly 121, no. 12 (1990): 1017–21.
  • L. A. Chen, C. F. Wang, M. G. Lin, J. L. Zhang, P. Q. Huang, and A. E. Wang, “Design and Synthesis of Camphor-Derived Chiral [1,2,4]Triazolo[4,3-a]Tetrahydroquinoline N-Heterocyclic Carbene Precursors by Pd-Catalyzed Coupling Reactions of Aryl Hydrazides with a Pyridyl Triflate Derivative,” Asian Journal of Organic Chemistry 2, no. 4 (2013): 294–8.
  • N. A. Aksenov, A. V. Aksenov, N. K. Kirilov, N. A. Arutiunov, D. A. Aksenov, V. Maslivetc, Z. Zhao, L. Du, M. Rubin, and A. Kornienko, “Nitroalkanes as Electrophiles: Synthesis of Triazole-Fused Heterocycles with Neuroblastoma Differentiation Activity,” Organic & Biomolecular Chemistry 18, no. 34 (2020): 6651–64.
  • W. Ried, and B. Peters, “Triazolylbenzoic Acids and Acylaminoquinazolones from Benzoxazinones and Carboxylic Acid Hydrazides,” Justus Liebigs Annalen Der Chemie 729, no. 1 (1969): 124–38.
  • M. H. Hekal, and F. S. M. Abu El-Azm, (). “New Potential Antitumor Quinazolinones Derived from Dynamic 2-Undecyl Benzoxazinone: Synthesis and Cytotoxic Evaluation,” Synthetic Communications 48, no. 18 (2018): 2391–402.
  • A. Walser, T. Flynn, and R. I. Fryer, “Quinazolines and 1,4-Benzodiazepines. LXXI. Reactions of 2-(Triazol-4-yl)Benzophenones,” Journal of Heterocyclic Chemistry 12, no. 4 (1975): 717–24.
  • R. Rama, and V. R. Srinivasan, “Synthesis of Fused Oxadiazolotriazolopyridines and Oxadiazolotriazoloquinolines,” Indian Journal of Chemistry Section B: Organic Chemistry Including Medicinal Chemistry 28B, no. 2 (1989): 170–2.
  • A. A. Ghoneim, and A. F. El-Farargy, “Synthesis of Some New Chromeno[2,3-b]Pyridine and [1,2,4]Triazolo[1,5- a]Quinoline Nucleoside Analogues with Expected Biological Activity,” Letters in Organic Chemistry 12, no. 1 (2015): 13–20.
  • B. S. Furniss, A. J. Hannaford, P. W. G. Smith, A. R. Tatchel, Vogel’s Textbook of Practical Organic Chemistry, 5th ed. (London: John Wiley & Sons, 1989), 1040.
  • V. Singh, J. Singh, K. P. Kaur, and L. Goverdhan, “Acceleration of the Pechmann Reaction by Microwave Irradiation: Application to the Preparation of Coumarins,” Journal of Chemical Research Synopses no. 2 (1997): 58–9.
  • F. A. Bassyouni, S. M. Abu-Baker, K. Mahmoud, M. Moharam, S. S. El-Nakkady, and M. A. Rehim, “Synthesis and Biological Evaluation of Some New Triazolo [1,5-a] Quinoline Derivatives as Anticancer and Antimicrobial Agents,” RSC Advances 4, no. 46 (2014): 24131–41.
  • G. G. Ladani, and M. P. Patel, “Regioselective One-Pot Three-Component Synthesis of Quinoline Based 1,2,4-Triazolo[1,5-a]Quinoline Derivatives,” RSC Advances 5, no. 94 (2015): 76943–8.
  • I. Devi, B. Baruah, and P. J. Bhuyan, “α-Cyclisation of Tertiary Amines: Synthesis of Some Novel Annelated Quinolines via a Three-Component Reaction under Solvent-Free Conditions,” Synlett 2006, no. 16 (2006): 2593–6.
  • M. Kidwai, P. Sapra, and B. Dave, “A Facile Method for Nucleophilic Aromatic Substitution of Cyclic Amine,” Synthetic Communications 30, no. 24 (2000): 4479–88.
  • F. H. A. Bamanie, A. S. Shehata, M. A. Moustafa, and M. M. Mashaly, “Enaminones in Heterocyclic Synthesis: Part 5: Isoniazid-Enaminone a New Organic Synthon and Tuberculostatic Candidate,” Natural Sciences 10, no. 6 (2012): 95–8.
  • C. N. Hoang, Zs Riedl, G. Timari, G. Hajos, and J. G. Schantl, “A Convenient Synthesis of 2-Substituted [1,2,4]Triazolo[1,5-a]Quinolines and [1,2,4]Triazolo[5,1-a]Isoquinolines,” ARKIVOC 2, no. 2 (2001): 42–50.
  • A. Messmer, S. Batori, and P. Sandor, “Reactivity of Substituted N-Aminopyridinium Salts and Their Benzologs. A Novel Approach to s-Triazolo[1,5-a]Quinolinium and s-Triazolo[5,1-a]Isoquinolinium Derivatives,” Heterocycles 31, no. 2 (1990): 289–304.
  • L. Bruche, L. Garanti, and G. Zecchi, “Competition between Ethylenic and Nitrile Groups in the Intramolecular Capture of Nitrile Imines,” Journal of the Chemical Society, Perkin Transactions 1, no. 0 (1983): 539–41.
  • L. Grubert, W. Jugelt, H. J. Breß, H. Köppel, U. Strietzel, and A. Dombrowski, “Reaktionen Von 1, 3‐Dipolen Mit Heterocyclen, 8. Synthese Von 1, 8a‐Dihydro [1,2,4] Triazolo [4,3‐a] Pyridinen Und Benzologen,” Liebigs Annalen Der Chemie 1992, no. 9 (1992): 885–94.
  • Y. Xu, B. Shen, L. Liu, and C. Qiao, “Metal Free [4 + 1] and [5 + 1] Annulation Reactions to Prepare Heterocycles Using DMF and Its Derivatives as One-Carbon Source,” Tetrahedron Letters 61, no. 19 (2020): 151844.
  • G. S. Sidhu, S. Naqui, and D. S. Iyengar, “Syntheses and Interconversions of Somes-Triazolo[3,4-a]Isoquinolines,”Journal of Heterocyclic Chemistry 3, no. 2 (1966): 158–64.
  • K. T. Potts, J. Bhattacharyya, S. L. Smith, A. M. Ihrig, and C. A. Girard, (). “1,2,4-Triazoles. XXXII. Syntheses and Correlation of Proton Magnetic Resonance Spectral Characteristics with Molecular Orbital Parameters of Derivatives of the s-Triazolo[4,3-a]Quinoline and s-Triazolo[3,4-a]Isoquinoline Ring Systems,” The Journal of Organic Chemistry 37, no. 26 (1972): 4410–5.
  • A. M. Kamal, S. M. Radwan, and R. M. Zaki, “Synthesis and Biological Activity of Pyrazolothienotetrahydroisoquinoline and [1,2,4]triazolo[3,4-a]thienotetrahydroisoquinoline derivatives],” European Journal of Medicinal Chemistry 46, no. 2 (2011): 567–78.
  • H. Reimlinge, F. Billiau, and W. R. F. Lingier, “Syntheses of Condensed Triazines, III. Further Syntheses of Oxo-s-Triazines and Condensed Triazoles,” Chemische Berichte 109, no. 1 (1976): 118–24.
  • S. Ueda, and H. Nagasawa, “Facile Synthesis of 1,2,4-Triazoles via a Copper-Catalyzed Tandem Addition-Oxidative Cyclization,” Journal of the American Chemical Society 131, no. 42 (2009): 15080–1.
  • M. Cai, J. Xia, and X. Huang, “Heterogeneous Copper(I)-Catalyzed Cascade Addition–Oxidative Cyclization of Nitriles with 2-Aminopyridines or Amidines: Efficient and Practical Synthesis of 1,2,4-Triazoles,”Synthesis 51, no. 09 (2019): 2014–22.
  • G. Sartori, P. Consonni, and A. Omodei-Sale, “The Synthesis of 2 14C-labelled 2-(3-alkoxyphenyl)-5,6-dihydro-5-trazolo[5, 1-a] isoquinoline compounds, novel antifertility agents,” Journal of Labelled Compounds & Radiopharmaceuticals 18, no. 4 (1981): 545–53.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.