264
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis, Magnetic Susceptibility, Thermodynamic Study and Bio-Evaluation of Transition Metal Complexes of New Schiff Base Incorporating INH Pharmacophore

, , , &
Pages 523-537 | Received 29 Jun 2021, Accepted 01 Dec 2021, Published online: 13 Dec 2021

References

  • D.-L. Pang, “Synthesis, Characterization and Crystal Structure of Schiff Base Nickel(II) Complexes with Antibacterial Activity,” Inorganic and Nano-Metal Chemistry 48, no. 11 (2019): 530–534.
  • R A. Baglia, J. P. T. Zaragoza, and D. P. Goldberg, “Biomimetic Reactivity of Oxygen-Derived Manganese and Iron Porphyrinoid Complexes,” Chemical Reviews 117, no. 21 (2017): 13320–52.
  • S. E. Sherman, Q. Xiao, and V. Percec, “Mimicking Complex Biological Membranes and Their Programmable Glycan Ligands with Dendrimersomes and Glycodendrimersomes,” Chemical Reviews 117, no. 9 (2017): 6538–631.
  • A. J. Jasniewski, and L. Que, “Dioxygen Activation by Nonheme Diiron Enzymes: diverse Dioxygen Adducts, High-Valent Intermediates, and Related Model Complexes,” Chemical Reviews 118, no. 5 (2018): 2554–92.
  • N. Soltani, M. Behpour, S. M. Ghoreishi, and H. Naeimi, “Corrosion Inhibition of Mild Steel in Hydrochloric Acid Solution by Some Double Schiff Bases,” Corrosion Science 52, no. 4 (2010): 1351–61.
  • A. Lapasam, L. Dkhar, N. Joshi, K. M. Poluri, and M. Rao Kollipara, “Antimicrobial Selectivity of Rhuthenium, Rhodium, and Iridium Half Sandwitch Complexes Containing Phenyl Hydrazone Schiff Base Ligands Towords B.thuringiensis and P.aeruginosa Bacteria,” Inorganica Chimica Acta 484, (2019): 255–63.
  • S. A. Patil, S. N. Unki, A. D. Kulkarni, V. H. Naik, U. Kamble, and S. P. Badami, “Spectroscopic, in Vitro Antibacterial, and Antifungal Studies of Co(II),Ni(II), and Cu(II) Complexes with 4-Chloro-3-Coumarinaldehyde Schiff Bases,” Journal of Coordination Chemistry 64, no. 2 (2011): 323–36.
  • O, M. I. Adly, M. Shebl, H. F. El-Shafiy, S. M. E. Khalil, A. Taha, and M. A. N. Mahdi, “Synthesis, Spectroscopic Characterization, Antimicrobial and Antitumor Studies of Mono-, bi-, and Tri-,Nuclear Metal Complexes of a New Schiff Base Ligand Derived from O-Acetoacetylphenol,” Journal of Molecular Structure 1150, (2017): 507–22.
  • Z. Faghih, A. Neshat, A. Wojtczak, Z. Faghih, Z. Mohammadi, and S. Varestan, “Palladium (II) Complexes Based on Schiff Base Ligands Derived from Ortho-Vanillin: Synthesis, Characterization and Cytotoxic Studies,” Inorganica Chimica Acta 471, (2018): 404–12.
  • W. H. Mahmoud, R. G. Deghadi, and G. G. Mohamed, “Metal Complexes of Novel Schiff Base Derived from Iron Sandwiched Organometallic and 4‐Nitro‐1, 2‐Phenylenediamine: Synthesis, Characterization, DFT Studies, Antimicrobial Activities and Molecular Docking,” Applied Organometallic Chemistry 32, no. 4 (2018): e4289.
  • M. Anar, E. H. Özkan, H. Öğütçü, G. Ağar, İ. Şakıyan, and N. Sarı, “Useful Agents against Aflatoxin B1 - Antibacterial Azomethine and Mn(III) Complexes Involving L-Threonine, L-Serine, and L-Tyrosine,” Artificial Cells, Nanomedicine, and Biotechnology 44, no. 3 (2016): 853–8.
  • E. Loğoğlu, E. A. Koyuncu, M. N. S. Karaboğa, and N. Sarı, “Synthesis and a Suggestion Mechanism on Biological Evaluation of Amino Acid-Schiff Base Ligands and Co(II), Cu(II) and Ni(II) Complexes,” Gazi University Journal of Science 29, no. 2 (2016): 303–7.
  • H. Chakraborty, N. Paul, and M. L. Rahman, “Catalytic Activities of Schiff Base Aquocomplexes of Copper(II) towards Hydrolysis of Amino Acid Esters,” Transition Metal Chemistry 19, no. 5 (1994): 524–6.
  • Z. Xi, W. Liu, G. Cao, W. Du, J. Huang, K. Cai, and H. Guo, “Catalytic Oxidation of Napthol by Metalloporphyrines,” Chemical Abstract 106, (1987): 140082.
  • R. Srekala, and K. K. Yusuff, “Catalytic Activity of Mixed Ligand Five Coordinate Co(II) Complexes of Polymer Bound Schiff Base, Cata (Pap Natl Symp),” Chemical Abstrac 130, (1999): 115551.
  • N. Devi, K. Sarma, R. Rahaman, and P. Barman, “Synthesis of a New Series of Ni(II), Cu(II), Co(II) and Pd(II) Complexes with an ONS Donor Schiff Base: crystal Structure, DFT Study and Catalytic Investigation of Palladium and Nickel Complexes towards Deacylative Sulfenylation of Active Methylenes and Regioselective 3-Sulfenylation of Indoles via Thiouronium Salt Formation,” Dalton Transactions (Cambridge, England : 2003) 47, no. 13 (2018): 4583–95.
  • M. Salehi, F. Faghani, M. Kubicki, and M. Bayat, “New Complexes of Ni (II) and Cu (II) with Tridentate ONO Schiff Base Ligand: synthesis, Crystal Structures, Electrochemical and Theoretical Investigation,” Journal of the Iranian Chemical Society 15, no. 10 (2018): 2229–40.
  • S. Dutta, and P. Biswas, “Structural, Spectroscopic, and Magnetic Properties of a Diphenolate-Bridged Fe(III) and Ni(II) Complex Showing Excellent Phosphodiester Cleavage Activity,” Polyhedron 31, no. 1 (2012): 110–7.
  • H. Wu, J. Yang, J. F. Ma, J. Y. Li, and T. F. Xie, “Syntheses, Structures and Photoelectronic Properties of a Series of Tri-and Tetra-Nuclear Metal Complexes Based on a 36-Membered Tetraphenol Macrocyclic Ligand,” Polyhedron 31, no. 1 (2012): 136–42.
  • R. B. Samulewski, J. C. da Rocha, R. Stieler, E. S. Lang, D. J. Evans, G. Poneti, O. R. Nascimento, R. R. Ribeiro, and F. S. Nunes, “Supramolecular Assembly of New Heteropolymetalic Molecules Based on Tetraiminodiphenolate Macrocycle and Hexacyanometallate Anions Magnetostructural and Spectroscopic Properties,” Polyhedron 30, no. 12 (2011): 1997–2006.
  • O. Santoro, X. Zhang, and C. Redshaw, “Synthesis of Biodegradable Polymers: A Review on the Use of Schiff-Base Metal Complexes as Catalysts for the Ring Opening Polymerization (ROP) of Cyclic Esters,” Catalysts 10, no. 7 (2020): 800.
  • P. Mahadevi, and S. Sumathi, “Mini Review on the Performance of Schiff Base and Their Metal Complexes as Photosensitizers in Dye-Sensitized Solar Cells,” Synthetic Communications 50, no. 15 (2020): 2237–49.
  • J. Barrett, “Inorganic Chemistry in Aqueous Solution,” Royal Society of Chemistry 21, (2003).
  • Rajbhoj S. W. and Chondhekar T. K., Systematic Experimental Physical Chemistry. (Aurangabad: Anjali Publication, 2000), 256.
  • K. T. Tadele, and T. W. Tsega, “Schiff Bases and Their Metal Complexes as Potential Anticancer Candidates: A Review of Recent Works,” Anti-Cancer Agents in Medicinal Chemistry 19, no. 15 (2019): 1786–95.
  • H. G. Aslan, S. Akkoç, and Z. Kökbudak, “Anticancer Activities of Various New Metal Complexes Prepared from a Schiff Base on A549 Cell Line,” Inorganic Chemistry Communications 111, (2020): 107645.
  • M. F. Saleem, “Synthesis and Characterization of Some New Schiff Base Derivatives of Gabapentin, and Assessment of Their Antibacterial, Antioxidant and Anticonvulsant Activities,” Tropical Journal of Pharmaceutical Research 20, no. 1 (2021): 145–53.
  • O. A. El-Gammal, F. S. Mohamed, G. N. Rezk, and A. A. El-Bindary, “Structural Characterization and Biological Activity of a New Metal Complexes Based of Schiff Base,” Journal of Molecular Liquids 330, (2021): 115522.
  • A. Arunadevi, and N. Raman, “Biological Response of Schiff Base Metal Complexes Incorporating Amino Acids–a Short Review,” Journal of Coordination Chemistry 73, no. 15 (2020): 2095–116.
  • A. Aragón-Muriel, Y. Liscano, Y. Upegui, S. M. Robledo, M. T. Ramírez-Apan, D. Morales-Morales, J. Oñate-Garzón, and D. Polo-Cerón, “In Vitro Evaluation of the Potential Pharmacological Activity and Molecular Targets of New Benzimidazole-Based Schiff Base Metal Complexes,” Antibiotics 10, no. 6 (2021): 728.
  • C. Shiju, D. Arish, and S. Kumaresan, “Novel Water Soluble Schiff Base Metal Complexes: Synthesis, Characterization, Antimicrobial-, DNA Cleavage, and Anticancer Activity,” Journal of Molecular Structure 1221, (2020): 128770.
  • C. J. Dhanaraj, and S. S. Salin Raj, “Synthesis, Characterization and Biological Studies of Schiff Base Metal Complexes Derived from 4-Aminoantipyrine, Acetamide and p-Phenylenediamine,” Inorganic Chemistry Communications 119, (2020): 108087.
  • N. Vamsikrishna, “Synthesis, Structural Characterization, DNA Interaction, Antibacterial and Cytotoxicity Studies of Bivalent Transition Metal Complexes of 6-Aminobenzothiazole Schiff Base,” Inorganic Chemistry Communications 113, (2020): 107767.
  • N. N. Rao, E. Kishan, K. Gopichand, R. Nagaraju, A. M. Ganai, and P. V. Rao, “Design, Synthesis, Spectral Characterization, DNA Binding, Photo Cleavage and Antibacterial Studies of Transition Metal Complexes of Benzothiazole Schiff Base,” Chemical Data Collections 27, (2020): 100368.
  • T. O. Zamzam, J. Shivaji, and M. Rai, “Potentiometric and Thermodynamic Studies of (N-[-(4-Chlorophenyl) Methylene] Nicotinohydrazide) and Its Transition Metal Complexes,” Integrated Ferroelectrics (Tylor & Francis no. 2005, no. 1 (2020): 88–94.
  • T. O. Zamzam, S. Jadhav, M. Mohsin, A. S. Faizaa, and M. Rai, “Complexation Study of Synthesized Pharmacological Organic Ligands with Samarium,” Russian Journal of Inorganic Chemistry 65, no. 14 (2020): 2046–52.
  • A. Z. El‐Sonbati, W. H. Mahmoud, G. G. Mohamed, M. A. Diab, S. M. Morgan, and S. Y. Abbas, “Synthesis, Characterization of Schiff Base Metal Complexes and Their Biological Investigation,” Applied Organometallic Chemistry 33, no. 9 (2019): e5048.
  • H. S. Seleem, B. A. El-Shetary, S. M. E. Khalil, and M. Shebl, “Potentiometric and Spectrophotometric Studies of the Complexation of Schiff-Base Hydrazones Containing the Pyrimidine Moiety,” Journal of the Serbian Chemical Society 68no. 10 (2003): 729–48.
  • K. S. Abou-Melha, “Transition Metal Complexes of Isonicotinic Acid (2-hydroxybenzylidene)hydrazide,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 70, no. 1 (2008): 162–70.
  • M. Shebl, “Coordination Behavior of New Bis(Tridentate ONO, ONS and ONN) Donor Hydrazones towards Some Transition Metal Ions: Synthesis, Spectral, Thermal, Antimicrobial and Antitumor Studies,” Journal of Molecular Structure 1128, (2017): 79–93.
  • E. M. Abdelrhman, B. A. El-Shetary, M. Shebl, and O. M. I. Adly, “Coordinating Behavior of Hydrazone Ligand Bearing Chromone Moiety towards Cu(II) Ions: Synthesis, Spectral, Density Functional Theory (DFT) Calculations, Antitumor, and Docking Studies,” Applied Organometallic Chemistry 35, (2021): 6183.
  • M. Shebl, and S. M. E. Khalil, “Synthesis, Spectral, X-Ray Diffraction, Antimicrobial Studies, and DNA Binding Properties of Binary and Ternary Complexes of Pentadentate N2O3 Carbohydrazone Ligands,” Monatshefte Für Chemie - Chemical Monthly 146, no. 1 (2015): 15–33.
  • P. Ramadevi, R. Singh, A. Prajapati, S. Gupta, and D. Chakraborty, “Cu (II) Complexes of Isoniazid Schiff Bases: DNA/BSA Binding and Cytotoxicity Studies on A549 Cell Line,” Advances in Chemistry 2014, (2014): 1–14.
  • S. S. Tajudeen, and G. Kannappan, “Schiff Base–Copper (II) Complexes: Synthesis, Spectral Studies and anti-Tubercular and Antimicrobial Activity,” Indian Journal of Advances in Chemical Science 4, no. 1 (2016): 40–8.
  • H. S. Seleem, B. A. El‐Shetary, and M. Shebl, “Synthesis and Characterization of a Novel Series of Metallothiocarbohydrazone Polymers and Their Adducts,” Heteroatom Chemistry 18, no. 1 (2007): 100–7.
  • M. Shebl, “Synthesis and Spectroscopic Studies of Binuclear Metal Complexes of a Tetradentate N2O2 Schiff Base Ligand Derived from 4,6-diacetylresorcinol and benzylamine,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 70, no. 4 (2008): 850–9.
  • H. S. Seleem, B. A. El-Shetary, S. M. E. Khalil, M. Mostafa, and M. Shebl, “Structural Diversity in Copper (II) Complexes of Bis (Thiosemicarbazone) and Bis (Semicarbazone) Ligands,” Journal of Coordination Chemistry 58, no. 6 (2005): 479–93.
  • I. P. Ejidike, and P. A. Ajibade, “Synthesis, Characterization and Biological Studies of Metal(II) Complexes of (3E)-3-[(2-{(E)-[1-(2,4-Dihydroxyphenyl) ethylidene]amino}ethyl)imino]-1-phenylbutan-1-one Schiff Base,” Molecules (Basel, Switzerland) 20, no. 6 (2015): 9788–802.
  • A. El-Razek, S. E. El-Gamasy, S. M. Hassan, M. Abdel-Aziz, M. S. Nasr, and S. M. “Transition Metal Complexes of a Multidentate Schiff Base Ligand Containing Guanidine Moiety: Synthesis, Characterization, anti-Cancer Effect, and anti-Microbial Activity,” Journal of Molecular Structure 1203, (2020): 127381.
  • El Saied, F. A. Salem, T. A. Shakdofa, M. M. and Al‐Hakimi, A. N. “Anti‐Neurotoxic Evaluation of Synthetic and Characterized Metal Complexes of Thiosemicarbazone Derivatives,” Applied Organometallic Chemistry 32, no. 4 (2018): e4215.
  • M. S. Hossain, K. C. Farzana, U. Nayon, M. Kudrat-E-Zahan, A. B. Laila, and M. M. Haque, “Synthesis, Characterization and Antimicrobial Activity of Metal Complexes of N-(4-Methoxybenzylidene) Isonicotinohydrazone Schiff Base,” Asian Journal of Chemical Sciences 6, no. 1 (2019): 1–8.
  • M. Shebl, “Synthesis, Spectral Studies, and Antimicrobial Activity of Binary and Ternary Cu(II), Ni(II), and Fe(III) Complexes of New Hexadentate Schiff Bases Derived from 4,6-Diacetylresorcinol and Amino Acids,” Journal of Coordination Chemistry 62, no. 19 (2009): 3217–31.
  • M. Shebl, “Mononuclear, Homo- and Hetero-Binuclear Complexes of 1-(5-(1-(2-Aminophenylimino) Ethyl)-2,4-Dihydroxyphenyl) Ethanone: synthesis, Magnetic, Spectral, Antimicrobial, Antioxidant, and Antitumor Studies,” Journal of Coordination Chemistry. 69, no. 2 (2016): 199–214.
  • O. M. Adly, M. Shebl, E. M. Abdelrhman, and B. A. El-Shetary, “Synthesis, Spectroscopic, X-Ray Diffraction, Antimicrobial and Antitumor Studies of Ni (II) and Co (II) Complexes Derived from 4-Acetyl-5, 6-Diphenyl-3 (2H)-Pyridazinone and Ethylenediamine,” Journal of Molecular Structure 1219, (2020): 128607.
  • M. Shebl, S. M. Khalil, A. Taha, and M. A. N. Mahdi, “Synthesis, Spectroscopic Studies, Molecular Modeling and Antimicrobial Activity of Binuclear Co(II) and Cu(II) Complexes of 4,6-diacetylresorcinol,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 113, (2013): 356–66.
  • M. Shebl, O. M. Adly, A. Taha, and N. N. Elabd, “Structural Variety in Copper (II) Complexes of 3-Formylchromone: Synthesis, Spectral, Thermal, Molecular Modeling and Biological Studies,” Journal of Molecular Structure 1147, (2017): 438–51.
  • F.A. Cotton, G. Wilkinson., (1986), Advanced Inorganic Chemistry. A Comprehensive Text, 4th ed, 761–789:Taipei, Mei ya.
  • F. K. Ommenya, E. A. Nyawade, D. M. Andala, and J. Kinyua, “Synthesis, Characterization and Antibacterial Activity of Schiff Base, 4-Chloro-2-{(E)-[(4-Fluorophenyl) Imino] Methyl} Phenol Metal (II) Complexes,”Journal of Chemistry 2020, (2020): 1–8.
  • M. A. Neelakantan, S. S. Marriappan, J. Dharmaraja, T. Jeyakumar, and K. Muthukumaran, “Spectral, XRD, SEM and Biological Activities of Transition Metal Complexes of Polydentate Ligands Containing Thiazole Moiety,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 71, no. 2 (2008): 628–35.
  • T. D. Thangadurai, and K. Natarajan, “Mixed Ligand Complexes of Ruthenium (II) Containing α, β-Unsaturated-β-Ketoaminesand Their Antibacterial Activity,” Transition Metal Chemistry 26, no. 4/5 (2001): 500–4.
  • N. Farrell, “Biomedical Uses and Applications of Inorganic Chemistry. An Overview,” Coordination Chemistry Reviews 232, no. 1-2 (2002): 1–4.
  • I. Kostova, and L. Saso, “Advances in Research of Schiff-Base Metal Complexes as Potent Antioxidants,” Current Medicinal Chemistry 20, no. 36 (2013): 4609–32.
  • R. K. Mohapatra, P. K. Das, M. K. Pradhan, A. A. Maihub, and M. M. El-Ajaily, “Biological Aspects of Schiff Base–Metal Complexes Derived from Benzaldehydes: An Overview,” Journal of the Iranian Chemical Society 15, no. 10 (2018): 2193–227.
  • M. S. More, P. G. Joshi, Y. K. Mishra, and P. K. Khanna, “Metal Complexes Driven from Schiff Bases and Semicarbazones for Biomedical and Allied Applications: A Review,”Materials Today. Chemistry 14, (2019): 100195.
  • M. N. Uddin, S. S. Ahmed, and S. R. Alam, “Biomedical Applications of Schiff Base Metal Complexes,”Journal of Coordination Chemistry 73no. 23 (2020): 3109–49.
  • M. Shebl, S. M. Khalil, S. A. Ahmed, and H. A. Medien, “Synthesis, Spectroscopic Characterization and Antimicrobial Activity of Mono-, bi-and Tri-Nuclear Metal Complexes of a New Schiff Base Ligand,” Journal of Molecular Structure 980, no. 1-3 (2010): 39–50. 1213.
  • M. Shebl, O. M. Adly, H. F. El-Shafiy, S. M. Khalil, A. Taha, and M. A. Mahdi, “Structural Variety of Mono-and Binuclear Transition Metal Complexes of 3-[(2-Hydroxy-Benzylidene)-Hydrazono]-1-(2-Hydroxyphenyl)-Butan-1-One: synthesis, Spectral, Thermal, Molecular Modeling, Antimicrobial and Antitumor Studies,” Journal of Molecular Structure 1134, (2017): 649–660. 123.
  • M. Shebl, “Synthesis, Spectroscopic Characterization and Antimicrobial Activity of Binuclear Metal Complexes of a New Asymmetrical Schiff Base Ligand: DNA Binding Affinity of copper(II) complexes,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 117, (2014): 127–37.
  • M. Shebl, O. M. Adly, E. M. Abdelrhman, and B. A. El-Shetary, “Binary and Ternary Copper (II) Complexes of a New Schiff Base Ligand Derived from 4-Acetyl-5, 6-Diphenyl-3 (2H)-Pyridazinone: Synthesis, Spectral, Thermal, Antimicrobial and Antitumor Studies,” Journal of Molecular Structure 1145, (2017): 329–38.
  • M. Shebl, M. Saif, A. I. Nabeel, and R. Shokry, “New Non-Toxic Transition Metal Nanocomplexes and Zn Complex-Silica Xerogel Nanohybrid: Synthesis, Spectral Studies, Antibacterial, and Antitumor Activities,” Journal of Molecular Structure 1118, (2016): 335–43.
  • M. Shebl, A. A. Saleh, S. M. Khalil, M. Dawy, and A. A. Ali, “Synthesis, Spectral, Magnetic, DFT Calculations, Antimicrobial Studies and Phenoxazinone Synthase Biomimetic Catalytic Activity of New Binary and Ternary Cu (II), Ni (II) and Co (II) Complexes of a Tridentate ONO Hydrazone Ligand,” Inorganic and Nano-Metal Chemistry 51, no. 2 (2021): 195–209.
  • S. M. Khalil, M. Shebl, and F. S. Al-Gohani, “Zinc (II) Thiosemicarbazone Complex as a Ligand towards Some Transition Metal Ions: synthesis, Spectroscopic and Antimicrobial Studies,” Acta Chimica Slovenica 57, no. 3 (2010): 716–25.
  • R. S. Joseyphus, and M. S. Nair, Antibacterial and antifungal studies on some schiff base complexes of zinc (II). Mycobiology 36, no. 2 (2008): 93–98.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.