549
Views
14
CrossRef citations to date
0
Altmetric
Research Articles

Nickel Nanoparticles Originated from Cressa Leaf Extract in the Preparation of a Novel Melem@Ni-HPA Photocatalyst for the Synthesis of Some Chromenes and a Preliminary MTT Assay on the Anticancer Activity of the Nanocomposite

ORCID Icon, & ORCID Icon
Pages 552-571 | Received 27 May 2021, Accepted 02 Dec 2021, Published online: 23 Dec 2021

References

  • M. M. Li, C. S. Duan, Y. Q. Yu, and D. Z. Xu, “A General and Efficient One-Pot Synthesis of Spiro [2-Amino-4H-Pyrans] via Tandem Multi-Component Reactions Catalyzed by Dabco-Based Ionic Liquids,” Dyes and Pigments 150 (2018): 202–6. 1
  • M. Neetha, K. R. Rohit, S. Saranya, and G. Anilkumar, “Zinc-Catalysed Multi-Component Reactions: An Overview,” Chemistry Select 5, no. 3 (2020): 1054–70.
  • A. E. Amr, M. M. Abdalla, S. A. Essaouy, M. M. Areef, M. H. Elgamal, T. A. Nassear, and A. E. Haschich, “Synthesis of Some Substituted 6, 7-Dihydro-4-Methoxy-7-Methyl-7-Substituted-5-Oxo-5 H-Furo [3, 2-g] Chromene-9-Sulfonate Derivatives as Potent Antihypertensive α-Blocking and Antiarrythmic Agents,” Russian Journal of General Chemistry 87, no. 8 (2017): 1826–33.
  • S. W. Ng, L. H. Chung, C. F. Yeung, H. S. Lo, H. L. Shek, T. S. Kang, C. H. Leung, D. L. Ma, and C. Y. Wong, “Metalated Chromene and Chromone Complexes: pH Switchable Metal-Carbon Bonding Interaction, Photo-Triggerable Chromone Delivery Application, and Antioxidative Activity,” Chemistry (Weinheim an Der Bergstrasse, Germany) 24, no. 8 (2018): 1779–83.
  • W. H. Zhang, S. Chen, X. L. Liu, X. W. Liu, and Y. Zhou, “Study on Antitumor Activities of the Chrysin-Chromene-Spirooxindole on Lewis Lung Carcinoma C57BL/6 Mice In Vivo,” Bioorganic & Medicinal Chemistry Letters 30, no. 17 (2020): 127410.
  • I. V. Ilyina, O. S. Patrusheva, V. V. Zarubaev, M. A. Misiurina, A. V. Slita, I. L. Esaulkova, D. V. Korchagina, Y. V. Gatilov, S. S. Borisevich, K. P. Volcho, et al. “Influenza Antiviral Activity of F- and OH-Containing Isopulegol-Derived Octahydro-2H-Chromenes,” Bioorganic & Medicinal Chemistry Letters 31 (2021): 127677.
  • N. Baral, D. R. Mishra, N. P. Mishra, S. Mohapatra, B. P. Raiguru, P. Panda, S. Nayak, M. Nayak, and P. S. Kumar, “Microwave-Assisted Rapid and Efficient Synthesis of Chromene-Fused Pyrrole Derivatives through Multicomponent Reaction and Evaluation of Antibacterial Activity with Molecular Docking Investigation,” Journal of Heterocyclic Chemistry 57, no. 2 (2020): 575–89.
  • A. Neghra, M. Lecsö, M. J. Butel, L. S. Espindola, B. Deguin, and E. Seguin, “Amidochromenes for Promising Antileishmanial Activity,” Natural Product Communications 12, no. 9 (2017): 1934578X1701200.
  • K. Haider, S. Rahaman, M. S. Yar, and A. Kamal, “Tubulin Inhibitors as Novel Anticancer Agents: An Overview on Patents (2013-2018)),” Expert Opinion on Therapeutic Patents 29, no. 8 (2019): 623–41.
  • I. Zghab, B. Trimeche, M. B. Mansour, M. Hassine, D. Touboul, and H. B. Jannet, “Regiospecific Synthesis, Antibacterial and Anticoagulant Activities of Novel Isoxazoline Chromene Derivatives,” Arabian Journal of Chemistry 10 (2017): S2651–S8.
  • T. M. Pereira, D. P. Franco, F. Vitorio, and A. E. Kummerle, “Coumarin Compounds in Medicinal Chemistry: Some Important Examples from the Last Years,” Current Topics in Medicinal Chemistry 18, no. 2 (2018): 124–48.
  • S. Saepudin and Y. Susilawati, “Senyawa Bioaktif Kromen Pada Genus Peperomia,” Kartika: Jurnal Ilmiah Farmasi 7, no. 2 (2020): 73–8. 25
  • A. Maleki, Z. Hajizadeh, and K. Valadi, “Green and Eco-Friendly Mica/Fe3O4 as an Efficient Nanocatalyst for the Multicomponent Synthesis of 2-Amino-4 H-Chromene Derivatives,” Green Chemistry Letters and Reviews 14, no. 1 (2021): 62–72.
  • A. Maleki, K. Valadi, S. Gharibi, and R. Taheri-Ledari, “Convenient and Fast Synthesis of Various Chromene Pharmaceuticals Assisted by Highly Porous Volcanic Micro-Powder with Nanoscale Diameter Porosity,” Research on Chemical Intermediates 46, no. 9 (2020): 4113–28.
  • B. Maleki, S. Babaee, and R. Tayebee, “Zn (L-Proline)2 as a Powerful and Reusable Organometallic Catalyst for the Very Fast Synthesis of 2‐Amino‐4H‐Benzo [g] Chromene Derivatives under Solvent-Free Conditions,” Applied Organometallic Chemistry 29, no. 6 (2015): 408–11.
  • R. Tayebee, A. Pejhan, H. Ramshini, B. Maleki, N. Erfaninia, Z. Tabatabaie, and E. Esmaeili, “Equisetum Arvense as an Abundant Source of Silica Nanoparticles. SiO2/H3PW12O40 Nanohybrid Material as an Efficient and Environmental Benign Catalyst in the Synthesis of 2‐Amino‐4H‐Chromenes under Solvent‐Free Conditions,” Applied Organometallic Chemistry 32, no. 1 (2018): e3924.
  • A. Maleki, H. Movahed, and P. Ravaghi, “Magnetic Cellulose/Ag as a Novel Eco-Friendly Nanobiocomposite to Catalyze Synthesis of Chromene-Linked Nicotinonitriles,” Carbohydrate Polymers 156 (2017): 259–67.
  • H. Hui, E. Esmaeili, R. Tayebee, Q. He, S. Abbaspour, M. Akram, Z. Jalili, N. Mahdizadeh, and A. Ahmadi, “Biosynthesis, Characterization, and Application of Cu2O Nanoparticles Originated from Cressa Leaf Extract as an Efficient Green Catalyst in the Synthesis of Some Chromenes,” Journal of the Iranian Chemical Society 17 (2021): 1.
  • B. Maleki, R. Tayebee, A. Khoshsima, and F. Ahmadpoor, “Facile Protocol for the Synthesis of 2-Amino-4H-Chromene Derivatives Using Choline Chloride/Urea,” Organic Preparations and Procedures International 53, no. 1 (2021): 34–41.
  • M. Jarrahi, R. Tayebee, B. Maleki, and A. Salimi, “One-Pot Multicomponent Green LED Photoinduced Synthesis of Chromeno [4,3-b] Chromenes Catalyzed by a New Nanophotocatalyst Histaminium Tetrachlorozincate,” RSC Advances 11, no. 32 (2021): 19723–36.
  • Z. Jalili, R. Tayebee, and F. M. Zonoz, “Eco-Friendly Synthesis of Chromeno [4, 3-b] Chromenes with a New Photosensitized WO3/ZnO@NH2-EY Nanocatalyst,” RSC Advances 11, no. 29 (2021): 18026–39.
  • J. Liu, J. Wang, E. Esmaeili, N. Mollania, H. Atharifar, M. Keywanlu, and R. Tayebee, “Biosynthesized CuO as a Green and Efficient Nanophotocatalyst in the Solvent-Free Synthesis of Some Chromeno [4,3-b] Chromenes. Studying Anti-Gastric Cancer Activity,” Polycyclic Aromatic Compounds 18 (2021): 1–20.
  • F. Javadi and R. Tayebee, “TiO2/Nanoclinoptilolite, a Recyclable and High Efficient Heterogeneous Nanocatalyst, for the Synthesis of 2-Amino-4H-Chromene Derivatives,” Iranian Journal of Catalysis 7, no. 4 (2017): 283–92.
  • A. Maleki and S. Azadegan, “Preparation and Characterization of Silica-Supported Magnetic Nanocatalyst and Application in the Synthesis of 2-Amino-4 H-Chromene-3-Carbonitrile Derivatives,” Inorganic and Nano-Metal Chemistry 47, no. 6 (2017): 917–24.
  • A. Maleki and S. Azadegan, “Amine-Functionalized Silica-Supported Magnetic Nanoparticles: Preparation, Characterization and Catalytic Performance in the Chromene Synthesis,” Journal of Inorganic and Organometallic Polymers and Materials 27, no. 3 (2017): 714–9.
  • Y. H. Ra, R. T. Rashid, X. Liu, S. M. Sadaf, K. Mashooq, and Z. Mi, “An Electrically Pumped Surface-Emitting Semiconductor Green Laser,” Science Advances 6, no. 1 (2020): eaav7523.
  • X. Liu, Y. Yang, X. Shi, and K. Li, “Fast Photocatalytic Degradation of Methylene Blue Dye Using a Low-Power Diode Laser,” Journal of Hazardous Materials 283 (2015): 267–75.
  • S. S. Kanakkillam, S. Shaji, B. Krishnan, S. Vazquez-Rodriguez, J. A. Martinez, M. M. Palma, and D. A. Avellaneda, “Nanoflakes of Zinc Oxide: Cobalt Oxide Composites by Pulsed Laser Fragmentation for Visible Light Photocatalysis,” Applied Surface Science 501, (2020): 144223.
  • R. Ameta, M. S. Solanki, S. Benjamin, and S. C. Ameta, “Photocatalysis,” in Advanced oxidation processes for waste water treatment (Academic Press, 2018), 135–75.
  • D. Yang, L. Li, G. Xiao, and S. Zhang, “Steering Charge Kinetics in Metal-Free g-C3N4/Melem Hybrid Photocatalysts for Highly Efficient Visible-Light-Driven Hydrogen Evolution,” Applied Surface Science 510 (2020): 145345.
  • S. Liu, H. Sun, K. O'Donnell, H. M. Ang, M. O. Tade, and S. Wang, “Metal-Free Melem/g-C3N4 Hybrid Photocatalysts for Water Treatment,” Journal of Colloid and Interface Science 464 (2016): 10–7.
  • M. S. Ribeiro, C. de Souza Santos, C. G. Vieira, and K. A. da Silva Rocha, “Catalytic Transformations of (+)-Aromadendrene: Functionalization and Isomerization Reactions in the Presence of the Heteropoly Acid Catalyst H3PW12O40,” Molecular Catalysis 498 (2020): 111264.
  • G. Marci, E. I. Garcia-Lopez, F. R. Pomilla, L. F. Liotta, and L. Palmisano, “Enhanced (Photo) Catalytic Activity of Wells-Dawson (H6P2W18O62) in Comparison to Keggin (H3PW12O40) Heteropolyacids for 2-Propanol Dehydration in Gas-Solid Regime,” Applied Catalysis A: General 528 (2016): 113–22.
  • X. Yang, Z. Chen, J. Zhao, L. Yu, H. Li, W. Chai, and J. You, “Fabrication of Mesoporous H3PW12O40/TiO2 Composite Nanofibers via Self-Assembly of PS-b-PEO and Photocatalytic Performance of the Resultant Fabrics,” Composites Communications 13 (2019): 125–8.
  • Y. Li, J. Wang, S. Fan, F. Wang, Z. Shen, H. Duan, J. Xu, and Y. Huang, “Nitrogen-Doped Hierarchically Porous Carbon Spheres for Low Concentration CO2 Capture,” Journal of Energy Chemistry 53 (2021): 168–74.
  • R. Tayebee, E. Esmaeili, B. Maleki, A. Khoshniat, M. Chahkandi, and N. Mollania, “Photodegradation of Methylene Blue and Some Emerging Pharmaceutical Micropollutants with an Aqueous Suspension of WZnO-NH2@H3PW12O40 Nanocomposite,” Journal of Molecular Liquids 317 (2020): 113928.
  • D. P. Kumar, J. Choi, S. Hong, D. A. Reddy, S. Lee, and T. K. Kim, “Rational Synthesis of Metal–Organic Framework-Derived Noble Metal-Free Nickel Phosphide Nanoparticles as a Highly Efficient Cocatalyst for Photocatalytic Hydrogen Evolution,” ACS Sustainable Chemistry & Engineering 4, no. 12 (2016): 7158–66.
  • L. Bi, D. Meng, Q. Bu, Y. Lin, D. Wang, and T. Xie, “Electron Acceptor of Ni Decorated Porous Carbon Nitride Applied in Photocatalytic Hydrogen Production,” Physical Chemistry Chemical Physics : PCCP 18, no. 46 (2016): 31534–41.
  • S. Zhang, H. Yin, J. Wang, S. Zhu, and Y. Xiong, “Catalytic Cracking of Biomass Tar Using Ni Nanoparticles Embedded Carbon Nanofiber/Porous Carbon Catalysts,” Energy 216 (2021): 119285.
  • A. Rahman, M. Aadil, M. Akhtar, M. F. Warsi, A. Jamil, I. Shakir, and M. Shahid, “Magnetically Recyclable Ni1-xCdxCeyFe2-yO4-rGO Nanocomposite Photocatalyst for Visible Light Driven Photocatalysis,” Ceramics International 46, no. 9 (2020): 13517–26.
  • B. Maleki, H. Natheghi, R. Tayebee, H. Alinezhad, A. Amiri, S. A. Hossieni, and S. M. Nouri, “Synthesis and Characterization of Nanorod Magnetic Co–Fe Mixed Oxides and Its Catalytic Behavior towards One-Pot Synthesis of Polysubstituted Pyridine Derivatives,” Polycyclic Aromatic Compounds 40, no. 3 (2020): 633–43.
  • B. Maleki, M. Chahkandi, R. Tayebee, S. Kahrobaei, H. Alinezhad, and S. Hemmati, “Synthesis and Characterization of Nanocrystalline Hydroxyapatite and Its Catalytic Behavior towards Synthesis of 3, 4‐Disubstituted Isoxazole‐5 (4H)‐Ones in Water,” Applied Organometallic Chemistry 33, no. 10 (2019): e5118.
  • F. Davar, Z. Fereshteh, and M. Salavati-Niasari, “Nanoparticles Ni and NiO: Synthesis, Characterization and Magnetic Properties,” Journal of Alloys and Compounds 476, no. 1–2 (2009): 797–801.
  • R. Bussamara, D. Eberhardt, A. F. Feil, P. Migowski, H. Wender, D. P. de Moraes, G. Machado, R. M. Papaléo, S. R. Teixeira, and J. Dupont, “Sputtering Deposition of Magnetic Ni Nanoparticles Directly onto an Enzyme Surface: A Novel Method to Obtain a Magnetic Biocatalyst,” Chemical Communications (Cambridge, England) 49, no. 13 (2013): 1273–5.
  • X. Zhang, P. Yang, and S. P. Jiang, “Ni Clusters-Derived 2D/2D Layered WOx (MoS2)/Ni-g-C3N4 Step-Scheme Heterojunctions with Enhanced Photo-and Electro-Catalytic Performance,” Journal of Power Sources 510 (2021): 230420.
  • R. K. Sharma, B. Arora, S. Sharma, S. Dutta, A. Sharma, S. Yadav, and K. Solanki, “In Situ Hydroxyl Radical Generation Using the Synergism of the Co–Ni Bimetallic Centres of a Developed Nanocatalyst with Potent Efficiency for Degrading Toxic Water Pollutants,” Materials Chemistry Frontiers 4, no. 2 (2020): 605–20.
  • Z. Yin, M. Han, Z. Hu, L. Feng, Y. Liu, Z. Du, and L. Zhang, “Peroxymonosulfate Enhancing Visible Light Photocatalytic Degradation of Bezafibrate by Pd/g-C3N4 Catalysts: The Role of Sulfate Radicals and Hydroxyl Radicals,” Chemical Engineering Journal 390 (2020): 124532.
  • K. Pradhan, S. Paul, and A. R. Das, “Fe(DS)3, an Efficient Lewis Acid-Surfactant-Combined Catalyst (LASC) for the One Pot Synthesis of Chromeno [4, 3-b] Chromene Derivatives by Assembling the Basic Building Blocks,” Tetrahedron Letters 54, no. 24 (2013): 3105–10.
  • Z. Chen, Q. Zhu, and W. Su, “A Novel Sulfonic Acid Functionalized Ionic Liquid Catalyzed Multicomponent Synthesis of 10, 11-Dihydrochromeno [4, 3-b] Chromene-6, 8 (7H, 9H)-Dione Derivatives in Water,” Tetrahedron Letters 52, no. 20 (2011): 2601–4.
  • H. Anaraki-Ardakani, R. Ghanavatian, and M. Akbari, “An Efficient One-Pot Synthesis of Tetrahydro-Chromeno [4,3-b] Chromene-6, 8-Dione and Tetrahydro-Pyrano [4,3-b] Chromene-1, 9-Dione Derivatives under Solvent-Free Conditions,” World Applied Sciences Journal 22 (2013): 802–8.
  • K. T. Patil, L. S. Walekar, S. S. Undare, G. B. Kolekar, M. B. Deshmukh, P. B. Choudhari, and P. V. Anbhule, “An Efficient One-Pot Synthesis of Tetrahydro-Chromeno [4, 3-b] Chromene-6, 8-Dione and Tetrahydro-Pyrano [4, 3-b] Chromene-1, 9-Dione Derivatives under Solvent-Free Conditions,” Indian Journal of Chemistry 55 (2016): 1151–9.
  • A. Shafiee, R. Motamedi, O. Firuzi, S. Meili, A. R. Mehdipour, and R. Miri, “Synthesis and Cytotoxic Activity of Novel Benzopyrano [3, 2-c] Chromene-6, 8-Dione Derivatives,” Medicinal Chemistry Research 20, no. 4 (2011): 466–74.
  • R. Motamedi, S. Baghbani, and F. F. Bamoharram, “Catalytic Method for Synthesis of Benzopyrano [3, 2-c] Chromene-6, 8-Dione Derivatives by Heteropoly Acids,” Synthetic Communications 42, no. 11 (2012): 1604–12.
  • W. H. dos Santos and L. C. da Silva-Filho, “New Method for the Synthesis of Chromeno [4,‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌ 3-b] Chromene Derivatives via Multicomponent Reaction Promoted Byniobium Pentachloride,” Tetrahedron Letters 58, no. 9 (2017): 894–7.
  • F. Khosravian, B. Karami, and M. Farahi, “Synthesis and Characterization of Molybdic Acid Immobilized on Modified Magnetic Nanoparticles as a New and Recyclable Catalyst for the Synthesis of Chromeno [4,‌3-b] Chromenes,” New Journal of Chemistry 41, no. 20 (2017): 11584–90.
  • S. Vajar and M. Mokhtary, “Nano-CuFe2O4@SO3H Catalyzed Efficient One-Pot Cyclo-Dehydration of Dimedone and Synthesis of Chromeno [4, 3-b] Chromenes,” Polycyclic Aromatic Compounds 39, no. 2 (2019): 111–23.
  • A. Saha, S. Payra, and S. Banerjee, “On Water Synthesis of Pyran–Chromenes via a Multicomponent Reactions Catalyzed by Fluorescent t-ZrO2 Nanoparticles,” RSC Advances 5, no. 123 (2015): 101664–71.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.