110
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Molecular Docking and Quantum Chemical Computations of 4-Chloro-2-[(furan-2-ylmethyl)amino]-5-sulfamoylbenzoic Acid Based on Density Functional Theory

, &
Pages 826-849 | Received 12 Aug 2020, Accepted 07 Dec 2021, Published online: 01 Jan 2022

References

  • Fevziye O. Simsek, Mustafa Sinan Kaynak, Nurullah Sanl and Selma Sahin, “Determination of Amlodipine and Furosemide with Newly Developed and Validated RP-HPLC Method in Commercially Available Tablet Dosage Forms,” Hacettepe University Journal of the Faculty of Pharmacy, 32, no. 2 (2012): 145–58.
  • Safila Naveed, Fatima Qamar and Syeda Zainab, “Simple UV spectrophotometric assay of Furosemide”, Journal of Innovations in Pharmaceuticals and Biological Sciences 1, no. 3 (2014): 97–101.
  • Suman Malik and Sonal Wankhede, “Synthesis, Characterization and Biological Activity of Fe-III and Co-II Complexes Derived From 4-Chloro-2-[(2-Furanylmethyl)-Amino]-5 Sulfamoylbenzoic Acid,” International Journal of Applied Biology and Pharmaceutical Technology 6, no. 2 (2015): 205–10.
  • Shinji Katsura, Nobuo Yamada, Atsushi Nakashima, Sumihiro Shiraishi, Mihoko Gunji, Takayuki Furuishi, Tomohiro Endo, Haruhisa Ueda, and Etsuo Yonemochi, “Investigation of Discoloration of Furosemide Tablets in a Light-Shielded Environment,” Chemical and Pharmaceutical Bulletin 65, no. 4 (2017): 373–80.
  • C. Charanya, S. Sampathkrishnan, and N. Balamurugan, “Quantum Chemical Studies, Spectroscopic Analysis and Molecular Structure Investigation of 4-Chloro-2-[(furan-2-ylmethyl)amino]-5-sulfamoylbenzoic Acid,” Macedonian Journal of Chemistry and Chemical Engineering 38, no. 2 (2019): 1–14.
  • C. T. Supuran and A. Scozzafava, “Carbonic Anhydrase Inhibitors,” Current Medicinal Chemistry-Immunology, Endocrine and Metabolic Agents 1, no. 1 (2001): 61–97.
  • C. T. Supuran, A. Scozzafava, and A. Casini, “Carbonic Anhydrase Inhibitors,” Medicinal Research Reviews 23, no. 2 (2003): 146–89.
  • Claudiu T. Supuran and Andrea Scozzafava, “A Expert Opin,” Expert Opinion on Therapeutic Patents 12, no. 2 (2002): 217–42.
  • J. Niessen, U. Schoder, M. Rosenbaum, and F. Scholz, “Fluorinated Polyanilines as Superior Materials for Electrocatalytic Anodes in Bacterial Fuel Cells,” Electrochemistry Communications 3 (2004): 571–5.
  • N. Sundaraganesan, J. Karpagam, S. Sebastian, and J. P. Cornard, “The Spectroscopic (FTIR, FT-IR Gas Phase and FT-Raman), First Order Hyperpolarizabilities, NMR Analysis of 2,4-Dichloroaniline by Ab Initio HF and Density Functional Methods,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 73, no. 1 (2009): 11–1122.
  • M. Karabacak, D. Karagoz, and M. Kurt, “Experimental (FT-IR and FT-Raman Spectra) and Theoretical (Ab Initio HF, DFT) Study of 2-Chloro-5-Methylaniline,” Journal of Molecular Structure 892, nos. 1–3 (2008): 25–31.
  • A. Altun, K. Golcuk, and M. Kumru, “Structure and Vibrational Spectra of p-Methylaniline: Hartree-Fock, MP2 and Density Functional Theory Studies,” Journal of Molecular Structure: THEOCHEM 637, nos. 1–3 (2003): 155–69.
  • M. Govindarajan, M. Karabacak, S. Periandy, and D. Tanuj, “Spectroscopic (FT-IR, FT-Raman, UV and NMR) Investigation and NLO, HOMO–LUMO, NBO Analysis of Organic 2,4,5-Trichloroaniline,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 97 (2012): 231–45.
  • M. Karabacak, D. Karagoz, and M. Kurt, “FT-IR, FT-Raman Vibrational Spectra and Molecular Structure Investigation of 2-Chloro-4-Methylaniline: A Combined Experimental and Theoretical Study,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 72, no. 5 (2009): 1076–83.
  • P. Wojciechowski, K. Helios, and D. Michalska, “Theoretical Anharmonic Raman and Infrared Spectra with Vibrational Assignments for Monofluoroaniline Isomers,” Vibration Spectroscopy 57 (2011): 126–34.
  • H. Wang, B. Liu, J. Wan, J. Xu, and X. Zheng, “Excited-State Structural Dynamics and Vibronic Coupling of 1,3-Dithiole-2-Thione-Resonance Raman Spectroscopy and Density Functional Theory Calculation Study,” Journal of Raman Spectroscopy 40, no. 8 (2009): 992–7.
  • Huigang Wang, Jun Xu, Junmin Wan, Yanying Zhao, and Xuming Zheng, “Excited State Structural Dynamics of Tetra(4-Aminophenyl)Porphine in the Condensed Phase: Resonance Raman Spectroscopy and Density Functional Theory Calculation Study,” The Journal of Physical Chemistry: B 114, no. 10 (2010): 3623–32.
  • R. Dennington, T. Keith, J. Milliam, GaussView, Version 5 (Semichem Inc., Shawnee Mission, KS, 2009).
  • D.J. Frisch, M.J. Trucks, G.W. Schlegel, H.B. Scuseria, G.E. Robb, M.A. Cheeseman, J.R. Scalmani, G. Barone, V. Mennucci, B. Petersson, G.A. Nakatsuji, H. Caricato, M. Li, X. Hratchian, H.P. Izmaylov, A.F. Bloino, J. Zheng, G. Sonnenber, Gaussian 09 (Wallingford CT: Gaussian, Inc., 2009), 2–3.
  • T. Yanai, D. P. Tew, and N. C. Handy, “A New Hybrid Exchange–Correlation Functional Using the Coulomb-Attenuating Method (CAM-B3LYP),” Chemical Physics Letters 393, nos. 1–3 (2004): 51–7.
  • A. D. Becke, “Density‐Functional Thermochemistry. II. The Effect of the Perdew–Wang Generalized‐Gradient Correlation Correction,” Journal of Chemical Physics 97 (1992): 173.
  • A. Becke, “Density‐Functional Thermochemistry. III. The Role of Exact Exchange,” Journal of Chemical Physics 98, no. 7 (1993): 5648–52.
  • C. Lee, W. Yang, and R. G. Parr, “Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density,” Physical Review B, Condensed Matter 37, no. 2 (1988): 785–9.
  • J. E. Carpenter and F. Weinhold, “Analysis of the Geometry of the Hydroxymethyl Radical by the “Different Hybrids for Different Spins” Natural Bond Orbital Procedure,” Journal of Molecular Structure: Theochem 169 (1988): 41–62.
  • A. E. Reed, L. A. Curtiss, and F. Weinhold, “Intermolecular Interactions from a Natural Bond Orbital, Donor–Acceptor Viewpoint,” Chemical Reviews 88, no. 6 (1988): 899–926.
  • J. P. Foster and F. Weinhold, “Natural Hybrid Orbitals,” Journal of the American Chemical Society 102, no. 24 (1980): 7211–8.
  • R. Bauernschmitt and R. Ahlrichs, “Treatment of Electronic Excitations within the Adiabatic Approximation of Time Dependent Density Functional Theory,” Chemical Physics Letters 256, nos. 4–5 (1996): 454–64.
  • M. E. Casida, C. Jamorski, K. C. Casida, and D. R. Salahub, “Molecular Excitation Energies to High-Lying Bound States from Time-Dependent Density-Functional Response Theory: Characterization and Correction of the Time-Dependent Local Density Approximation Ionization Threshold,” Journal of Chemical Physics 108, no. 11 (1998): 4439–49.
  • O. Trott, “Autodockvina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading,” Journal of Comprehensive Chemistry 31 (2010): 455–61.
  • Garrett M. Morris, David S. Goodsell, Robert S. Halliday, Ruth Huey, William E. Hart, Richard K. Belew, and Arthur J. Olson, “Automated Docking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function,” Journal of Computational Chemistry 19, no. 14 (1998): 1639–62.
  • Garrett M. Morris, Ruth Huey, William Lindstrom, Michel F. Sanner, Richard K. Belew, David S. Goodsell, and Arthur J. Olson, “AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility,” Journal of Computational Chemistry 30, no. 16 (2009): 2785–91.
  • http://www.python.org.
  • L. J. Farrugia, “ORTEP-3 for Windows: A Version of ORTEP-III with a Graphical User Interface (GUI),” Journal of Applied Crystallography 30, no. 5 (1997): 565.
  • M. Silverstein, G. C. Basseler, and C. Morill, Spectrometric Identification of Organic Compounds (New York: Wiley, 1981).
  • L. J. Bellamy, The Infrared Spectra of Complex Molecules, vol. 2 (London: Chapman and Hall, 1980).
  • B. M. S. Alvareza, M. I. M. Valdeza, E. H. Cultin, and C. O. D. Vedova, “Spectroscopic and Theoretical Studies of Sulfamoil Fluoride, FSO2NH2 and N-(fluorosulfonyl) Imidosulfuryl Fluoride, FSO2NS(O)F2,” Journal of Molecular Structure 657 (2003): 291–300.
  • R. M. S. Alvareza, E. H. Cutin, and C. O. D. Vedova, “Vibrational Studies of Sulfamoil Chloride (ClSO2NH2),” Journal of Molecular Structure 440 (1998): 213–219.
  • B. Thimme Gowda, K. Jyothi, and J. D. D’Souza, “Infrared and NMR Spectra of Arylsulphonamides, 4-X-C6H4SO2NH2 and i-X, j-YC6H3SO2NH2 (X = H; CH3; C2H5; F; Cl; Br; I or NO2 and i-X, j-Y = 2,3-(CH3)2; 2,4-(CH3)2; 2,5-(CH3)2; 2-CH3, 4-Cl; 2-CH3, 5-Cl; 3-CH3, 4-Cl; 2,4-Cl2 or 3,4-Cl2),” Journal for Nature Research 57a (2002): 967–73.
  • D. Lin-Vien, N. B. Colthup, W. G. Fateley, and J. G. Grasselli, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules (Boston, MA: Academic Press, 1974).
  • G. Varsanyi, Assignments of Vibrational Spectra of 700 Benzene Derivatives (New York: Wiley, 1974), 280.
  • A. Altun, K. Golcuk, and M. Kumru, “Theoretical and Experimental Studies of the Vibrational Spectra of m-Methylaniline,” Journal of Molecular Structure: Theochem 625, nos. 1–3 (2003): 17–24.
  • C. Charanya, S. Sampathkrishnan, and N. Balamurugan, “Quantum Mechanical Analysis, Spectroscopic (FT-IR, FT-Raman, UV–Visible) Study, and HOMO–LUMO Analysis of (1S, 2R)-2-Amino-1-Phenylpropan-1-ol Using Density Functional Theory,” Journal of Molecular Liquids 231 (2017): 116–25.
  • N. Sundaraganesan, H. Saleem, and S. Mohan, “Vibrational Spectra, Assignments and Normal Coordinate Analysis of 3-Aminobenzyl Alcohol,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 59, no. 11 (2003): 2511–17.
  • D. Sajan, J. Binoy, B. Pradeep, K. Venkatakrishnan, V. B. Kartha, I. H. Joe, and V. S. Jayakumar, “NIR-FT Raman and Infrared Spectra and Ab Initio Computations of Glycinium Oxalate,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 60A (2004): 173–80.
  • J. Uma Maheswari, S. Muthu, and T. Sundius, “An Experimental and Theoretical Study of the Vibrational Spectra and Structure of Isosorbide dinitrate,” Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy 109 (2013): 322–30.
  • K. B. Wiberg and A. Sharke, “A Vibrational Study of Cyclohexane and Some of its Isotopic Derivatives-III. A Vibrational Analysis of Cyclohexane, Cyclohexane-d12, Cyclohexane-1,1,4,4-d4 and Cyclohexane-1,1,2,2,4,4,5,5-d8,” Spectrochim Acta Part A: Molecular and Biomolecular Spectroscopy 29 (1973): 583–94.
  • S. Muthu, N. R. Sheela, and S. Sampathkrishnan, “Density Functional Theory and Ab Initio Studies of Vibrational Spectra of 2-Bis (2-Chloroethyl) Aminoperhydro-1,3,2-Oxazaphosphorinane-2-Oxide,” Molecular Simulation 37, no. 15 (2011): 1276–88.
  • Kenneth B. Wiberg, and Andrew Shrake, “A Vibrational Study of Cyclohexane and Some of its Isotopic Derivatives III. A Vibrational Analysis of Cyclohexane, Cyclohexane-D12, Cyclohexane-1,1,4,4-D4 and Cyclohexane-1,1,2,2,4,4,5,5-D8,” Spectrochimica Acta Part A: Molecular Spectroscopy 29, no. 3 (1973): 583–94.
  • N. Balamurugan, C. Charanya, S. Sampath Krishnan, and S. Muthu, “Molecular Structure, Vibrational Spectra, First Order Hyper Polarizability, NBO and HOMO–LUMO Analysis of 2-Amino-5-bromo-benzoic Acid Methyl Ester,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 137 (2015): 1374–86.
  • M. Karabacak, M. Cinar, Z. Unal, and M. Kurt, “FT-IR,” Journal of Molecular Structure 982, nos. 1–3 (2010): 22–7.
  • M. Karabacak, M. Cinar, and M. Kurt, “DFT Based Computational Study on the Molecular Conformation, NMR Chemical Shifts and Vibrational Transitions for N-(2-Methylphenyl) Methanesulfonamide and N-(3-Methylphenyl) Methanesulfonamide,” Journal of Molecular Structure 968, nos. 1–3 (2010): 108–14.
  • K. L. Jayalakshmi and B. T. Gowda, “Infrared and NMR (1H and 13C) Spectral Studies of N-(Substituted Phenyl)-Methanesulphonamides,” Journal for Nature Research 59a (2004): 491–500.
  • N. I. Dodoff, “Conformational and Vibrational Analysis of N-3-Pyridinylmethanesulfonamide,” Vibrational Spectroscopy 4, no. 3 (2000): 5–9.
  • E. F. Mooney, “The Infrared Spectra of Chloro- and Bromobenzene Derivatives—I: Anisoles and Phenetoles,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 19, no. 6 (1963): 877–87.
  • E. F. Mooney, “The Infrared Spectra of Chloro- and Bromobenzene Derivatives—II. Nitrobenzenes,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 20, no. 6 (1964): 1021–32.
  • V. K. Rastogi, M. A. Palafox, K. Lang, S. K. Singhal, R. K. Soni, and R. Sharma, “Vibrational Spectra and Thermodynamics of Biomolecule: 5-Chlorocytosine,” Indian Journal of Pure and Applied Physics 44 (2006): 653–60.
  • S. Muthu, E. Elamurugu Porchelvi, M. Karabacak, A. M. Asiri, and Sushmita S. Swathi, “Synthesis, Structure, Spectroscopic Studies (FT-IR, FT-Raman and UV), Normal Coordinate, NBO and NLO Analysis of Salicylaldehyde p-Chlorophenylthiosemicarbazone,” Journal of Molecular Structure 1081 (2015): 400–12.
  • G. Varsanyi, Assignments of Vibrational Spectra of Benzene Derivatives (New York: Academic Press, 1969).
  • Takehiko Shimanouchi, Yuzo Kakiuti, and Itaru Gamo, “Out‐of‐Plane CH Vibrations of Benzene Derivatives,” Journal of Chemical Physics 25, no. 6 (1956): 1245–45.
  • V. Balachandran, V. Karpagam, and A. Lakshmi, “Conformational Stability, Theoretical and Experimental Vibrational Spectral Analysis of 2,4,6-Trihydroxybenzaldehyde,” Journal of Molecular Structure 1021 (2012): 13–21.
  • J. Cioslowski, “A New Population Analysis Based on Atomic Polar Tensors,” Journal of the American Chemical Society 111, no. 22 (1989): 8333–36.
  • M. Gussoni, “Infrared Intensities: A New Tool in Chemistry,” Journal of Molecular Structure 141 (1986): 63–92.
  • W. B. Person and J. H. Newton, “Dipole Moment Derivatives and Infrared Intensities. I. Polar Tensors,” The Journal of Chemical Physics 61, no. 3 (1974): 1040–49.
  • A. Milano and C. Castiglioni, “Modeling of Molecular Charge Distribution on the Basis of Experimental Infrared Intensities and First-Principles Calculations: The Case of CH Bonds,” The Journal of Physical Chemistry A 114 (2010): 624–32.
  • M. M. C. Ferreira, and E. Suto, “Atomic Polar Tensor Transferability and Atomic Charges in the Fluoromethane Series CHxF4-x,” The Journal of Physical Chemistry 96, no. 22 (1992): 8844–49.
  • M. J. S. Dewar, The Molecular Orbital Theory of Organic Chemistry (New York: McGraw-Hill and Inc., 1969).
  • C. A. Coulson, R. McWeeny, Coulson’s Valence (Oxford: Oxford University Press, 1979).
  • E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, F. Weinhold, NBO 5.0, Theoretical Chemistry Institute (Madison: University of Wisconsin, 2001).
  • Serap Yazıcı, Çiğdem Albayrak, İsmail Gümrükçüoğlu, İsmet Şenel, and Orhan Büyükgüngör, “Experimental and Density Functional Theory (DFT) Studies on (E)-2-Acetyl-4-(4-Nitrophenyldiazenyl) Phenol,” Journal of Molecular Structure 985, nos. 2–3 (2011): 292–98.
  • B. Kosar and C. Albayrak, “Spectroscopic Investigations and Quantum Chemical Computational Study of (E)-4-methoxy-2-[(p-tolylimino)methyl]phenol,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 78, no. 1 (2011): 160–67.
  • P. Geerlings, F. D. Proft, and W. LAngenaeker, “Conceptual Density Functional Theory,” Chemical Reviews 103, no. 5 (2003): 1793–873.
  • J. Padmanabhan, R. Parathasarathi, V. Subramanian, and P. K. Chattaraj, “Electrophilicity-Based Charge Transfer Descriptor,” Journal of Physical Chemistry A111 (2007): 1358–1361.
  • Christophe Morell, Andre Grand, and Alejandro Toro-Labbe, “New Dual Descriptor for Chemical Reactivity,” The Journal of Physical Chemistry A 109, no. 1 (2005): 205–12.
  • R. Hoffmann, VCH Publishers, New York (1998).
  • T. Hughbanks and R. Hoffmann, “Chains of Trans-Edge-Sharing Molybdenum Octahedra: Metal–Metal Bonding in Extended Systems,” Journal of the American Chemical Society 105, no. 11 (1983): 3528–3537.
  • J. G. Małecki, “Synthesis, Crystal, Molecular and Electronic Structures of Thiocyanate Ruthenium Complexes with Pyridine and its Derivatives as Ligands,” Polyhedron 29, no. 8 (2010): 1973–979.
  • Noel M. O'Boyle, Adam L. Tenderholt, and Karol M. Langner, “Cclib: A Library for Package-Independent Computational Chemistry Algorithms,” Journal of Computational Chemistry 29, no. 5 (2008): 839–845.
  • M. Chen, U. V. Waghmare, C. M. Friend, and E. Kaxiras, “A Density Functional Study of Clean and Hydrogen-Covered α-MoO3(010): Electronic Structure and Surface Relaxation,” Journal of Chemical Physics 109, no. 16 (1998): 6854–860.
  • J. Henriksson, T. Saue, and P. Norman, “Quadratic Response Functions in the Relativistic Four-Component Kohn-Sham Approximation,” Journal of Chemical Physics 128 (2008): 024105(1–9).
  • J. P. Hermann, D. Ricard, and J. Ducuing, “Optical Nonlinearities in Conjugated Systems: β‐Carotene,” Applied Physics Letters 23, no. 4 (1973): 178–80.
  • C. W. Zhang, Y. D. Huang, S. C. Wang, C. Y. Zhang, and X. Q. Zhang, “Blends of Polypropylene and Syndiotactic 1,2-Polybutadiene: Morphology, Crystallization Behaviors and Mechanical Properties,” Chemical Research in Chinese University 24 (2008): 640–43.
  • D. A. Klein Man, “Nonlinear Dielectric Polarization in Optical Media,” Journal Physical Review 126 (1962): 1977–79.
  • H. Sekino and R. J. Bartlett, “Hyperpolarizabilities of the Hydrogen Fluoride Molecule: A Discrepancy Between Theory and Experiment?” Journal of Chemical Physics 84, no. 5 (1986): 2726–33.
  • J. Henriksson, T. Saue, and P. Norman, “Quadratic Response Functions in the Relativistic Four-Component Kohn-Sham Approximation,” Journal of Chemical Physics 128 (2008): 024105(1–9).
  • J. P. Hermann, D. Ricard, and J. Ducuing, “Optical Nonlinearities in Conjugated Systems: β-Carotene,” Applied Physics and Letters 23, no. 4 (1973): 178–180.
  • R. Parthasarathi, V. Subramanian, D. R. Roy, and P. K. Chattaraj, “Electrophilicity Index as a Possible Descriptor of Biological Activity,” Bioorganic and Medicinal Chemistry 12, no. 21 (2004): 5533–43.
  • A. Lagunin, A. Stepanchikova, D. Filimonov, and V. Poroikov, “PASS: Prediction of Activity Spectra for Biologically Active Substances,” Bioinformatics 16, no. 8 (2000): 747–8.
  • E. Y. Chien, W. Liu, Q. Zhao, V. Katritch, G. W. Han, M. A. Hanson, L. Shi, A. H. Newman, J. A. Javitch, V. Cherezov, and R. C. Stevens, “Structure of the Human Dopamine D3 Receptor in Complex with a D2/D3 Selective Antagonist,” Science (New York, NY) 330, no. 6007 (2010): 1091–95.
  • A. R. Katritzky, L. Mu, V. S. Lobanov, and M. Karelson, “Correlation of Boiling Points with Molecular Structure. 1. A Training Set of 298 Diverse Organics and a Test Set of 9 Simple Inorganics,” The Journal of Physical Chemistry 100, no. 24 (1996): 10400–407.
  • X. Qi, F. Loiseau, W. L. Chan, Y. Yan, Z. Wei, L.-G. Milroy, R. M. Myers, S. V. Ley, R. J. Read, R. W. Carrell, et al. “Allosteric Modulation of Hormone Release from Thyroxine and Corticosteroid-Binding Globulins,” The Journal of Biological Chemistry 286, no. 18 (2011): 16163–173.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.