249
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Spectroscopic, Solvation Effects and MD Simulation of an Adamantane-Carbohydrazide Derivative, a Potential Antiviral Agent

, ORCID Icon, , , , , , & show all
Pages 2056-2070 | Received 30 Oct 2021, Accepted 28 Jan 2022, Published online: 20 Feb 2022

References

  • A. Manvar, A. Bavishi, A. Radadiya, J. Patel, V. Vora, N. Dodia, K. Rawal, and A. Shah, “Diversity Oriented Design of Various Hydrazides and Their in Vitro Evaluation against mycobacterium tuberculosis H37Rv Strains,” Bioorganic and Medicinal Chemistry Letters 21, no. 16 (2011): 4728–31.
  • P. Kumar, B. Narasimhan, P. Yogeeswari, and D. Sriram, “Synthesis and Antitubercular Activities of Substituted Benzoic Acid N'-(Substituted Benzylidene/furan-2-ylmethylene)-N-(pyridine-3-carbonyl)-hydrazides,” European Journal of Medicinal Chemistry 45, no. 12 (2010): 6085–9.
  • V. H. Pham, T. P. D. Phan, D. C. Phan, and B. D. Vu, “Synthesis and Bioactivity of Hydrazide-Hydrazones with the 1-Adamantyl-Carbonyl Moiety,” Molecules 24, no. 21 (2019): 4000. https://doi.org/10.3390/molecules24214000
  • P. K. Paul, M. Yadav, and I. B. Obot, “Investigation on Corrosion Protection Behavior and Adsorption of Carbohydrazide-Pyrazole Compounds on Mild Steel in 15% HCl Solution: Electrochemical and Computational Approach,” Journal of Molecular Liquids 314 (2020): 113513.
  • B. Li, J. Yao, K. Guo, F. He, K. Chen, Z. Lin, S. Liu, J. Huang, Q. Wu, M. Fang, et al, “Design, Synthesis and Biological Evaluation of 5-((8-Methoxy-2-Methylquinolin-4-yl)Amino)-1H-Indole-2-Carbohydrazide Derivatives as Novel Nur77 Modulators,” European Journal of Medicinal Chemistry 204 (2020): 112608.
  • R. Maccari, R. Ottanà, and M. G. Vigorita, “In Vitro Advanced Antimycobacterial Screening of Isoniazid-Related Hydrazones, Hydrazides and Cyanoboranes: Part 14,” Bioorganic & Medicinal Chemistry Letters 15, no. 10 (2005): 2509–13.
  • F. Martins, S. Santos, C. Ventura, R. Elvas-Leitão, L. Santos, S. Vitorino, M. Reis, V. Miranda, H. F. Correia, J. Aires-de-Sousa, et al, “Design, Synthesis and Biological Evaluation of Novel Isoniazid Derivatives with Potent Antitubercular Activity,” European Journal of Medicinal Chemistry 81 (2014): 119–38.
  • G. Turan-Zitouni, M. D. Altıntop, A. Özdemir, F. Demirci, U. Abu Mohsen, and Z. A. Kaplancıklı, “Synthesis and Antifungal Activity of New Hydrazide Derivatives,” Journal of Enzyme Inhibition and Medicinal Chemistry 28, no. 6 (2013): 1211–6.
  • G. L. Backes, D. M. Neumann, and B. S. Jursic, “Synthesis and Antifungal Activity of Substituted Salicylaldehyde Hydrazones, Hydrazides and Sulfohydrazides,” Bioorganic & Medicinal Chemistry 22, no. 17 (2014): 4629–36. https://doi.org/10.1016/j.bmc.2014.07.022
  • D. Kumar, V. Judge, R. Narang, S. Sangwan, E. De Clercq, J. Balzarini, and B. Narasimhan, “Benzylidene/2-Chlorobenzylidene Hydrazides: Synthesis, Antimicrobial Activity, QSAR Studies and Antiviral Evaluation,” European Journal of Medicinal Chemistry 45, no. 7 (2010): 2806–16.
  • H. Z. Zhang, J. Drewe, B. Tseng, S. Kasibhatla, and S. X. Cai, “Discovery and SAR of Indole-2-Carboxylic Acid Benzylidene-Hydrazides as a New Series of Potent Apoptosis Inducers Using a Cell-Based HTS Assay,” Bioorganic & Medicinal Chemistry 12, no. 13 (2004): 3649–55. https://doi.org/10.1016/j.bmc.2004.04.017
  • W. Liao, C. Xu, X. Ji, G. Hu, L. Ren, Y. Liu, R. Li, P. Gong, and T. Sun, “Design and Optimization of Novel 4-(2-Fluorophenoxy)quinoline Derivatives Bearing a Hydrazone Moiety as c-Met Kinase Inhibitors,” European Journal of Medicinal Chemistry 87 (2014): 508–18.
  • Z. Garkani-Nejad, and B. Ahmadi-Roudi, “Modeling the Antileishmanial Activity Screening of 5-Nitro-2-Heterocyclic Benzylidene Hydrazides Using Different. chemometrics Methods,” European Journal of Medicinal Chemistry 45, no. 2 (2010): 719–26.
  • K. M. Khan, M. Rasheed, Z. Ullah, S. Hayat, F. Kaukab, M. I. Choudhary, Atta. Ur-Rahman, and S. Perveen, “Synthesis and in Vitro Leishmanicidal Activity of Some Hydrazides and Their Analogues,” Bioorganic & Medicinal Chemistry 11 (2003): 1381–7.
  • J. Balzarini, B. Orzeszko, J. K. Mauri, and A. Orzeszko, “Synthesis and anti-HIV Studies of 2-Adamantyl-Substituted Thiazolidin-4-Ones,” European Journal of Medicinal Chemistry 42, no. 7 (2007): 993–1003. https://doi.org/10.1016/j.ejmech.2007.01.003
  • A. A. El-Emam, O. A. Al-Deeb, M. A. Al-Omar, and J. Lehmann, “Synthesis, Antimicrobial, and anti-HIV-1 Activity of Certain 5-(1-Adamantyl)-2-Substituted Thio-1,3,4-Oxadiazoles and 5-(1-Adamantyl)-3-Substituted Aminomethyl-1,3,4-Oxadiazoline-2-Thiones,” Bioorganic & Medicinal Chemistry 12, no. 19 (2004): 5107–13.
  • S. Y. Sun, P. Yue, X. Chen, W. K. Hong, and R. Lotan, “The Synthetic Retinoid CD437 Selectively Induces Apoptosis in Human Lung Cancer Cells While Sparing Normal Human Lung Epithelial Cells,” Cancer Research 62, no. 8 (2002): 2430–6. PMID: 11956107
  • Paula Lorenzo, Rosana Alvarez, Maria A. Ortiz, Susana Alvarez, F. Javier Piedrafita, and Angel R. de Lera, “Inhibition of IkappaB kinase-beta and anticancer activities of novel chalcone adamantyl arotinoids,” Journal of Medicinal Chemistry 51, no. 17 (2008): 5431–40.
  • A. A. El-Emam, K. A. Alrashood, M. A. Al-Omar, and A. M. S. Al-Tamimi, “Synthesis and Antimicrobial Activity of N'-Heteroarylidene-1-Adamantylcarbohydrazides and (±)-2-(1-adamantyl)-4-Acetyl-5-[5-(4-Substituted Phenyl-3-isoxazolyl)]-1,3,4-Oxadiazolines,” Molecules (Basel, Switzerland) 17, no. 3 (2012): 3475–83. https://doi.org/10.3390/molecules17033475
  • O. A. Al-Deeb, A. A. Al-Omar, N. R. El-Brollosy, E. E. Habib, T. M. Ibrahim, and A. A. El-Emam, “Synthesis, Antimicrobial, and anti-Inflammatory Activities of Novel 2-[3-(1-Adamantyl)-4-Substituted-5-Thioxo-1,2,4-Triazolin-1-yl]Acetic Acids, 2-[3-(1-Adamantyl)-4-Substituted-5-Thioxo-1,2,4-Triazolin-1-yl]Propionic Acids and Related Derivatives,” Arzneimittel-Forschung/Drug Research 56 (2006): 40–7. https://doi.org/10.1055/s-0031-1296699
  • A. A. El-Emam, A. M. S. Al-Tamimi, M. A. Al-Omar, K. A. Al-Rashood, and E. E. Habib, “Synthesis and Antimicrobial Activity of Novel 5-(1-Adamantyl)-2-Aminomethyl-4-Substituted-1,2,4-Triazoline-3-Thiones,” European Journal of Medicinal Chemistry 68 (2013): 96–102. https://doi.org/10.1016/j.ejmech.2013.07.024
  • K. Omar, A. Geronikaki, P. Zoumpoulakis, C. Camoutsis, M. Soković, A. Ćirić, and J. Glamoćlija, “Novel 4-Thiazolidinone Derivatives as Potential Antifungal and Antibacterial Drugs,” Bioorganic & Medicinal Chemistry 18, no. 1 (2010): 426–32.
  • Y. Dong, S. Wittlin, K. Sriraghavan, J. Chollet, S. A. Charman, W. N. Charman, C. Scheurer, H. Urwyler, J. S. Tomas, C. Snyder, et al, “The Structure-Activity Relationship of the Antimalarial Ozonide Arterolane (OZ277),” Journal of Medicinal Chemistry 53, no. 1 (2010): 481–91.,.
  • E. A. Ekimov, M. V. Kondrin, S. G. Lyapin, YuV. Grigoriev, A. A. Razgulov, V. S. Krivobok, S. Gierlotka, and S. Stelmakh, “High Pressure Synthesis and Optical Properties of Nanodiamonds Obtained from Halogenated Adamantanes,” Diamond and Related Materials 103 (2020): 107718.
  • J. Xie, Y. Liu, T. Jia, L. Pan, Y. Fang, C. Shi, G. Nie, X. Zhang, and J. J. Zou, “Regioselective Synthesis of Methyl-Substituted Adamantanes for Promoting Oxidation Stability of High Density Fuels,” Energy & Fuels 34, no. 4 (2020): 4516–24.
  • K. W. Harrison, K. E. Rosenkoetter, and B. G. Harvey, “High Density Alkyl Diamondoid Fuels Synthesized by Catalytic Cracking of Alkanes in the Presence of Adamantane,” Energy & Fuels 32, no. 7 (2018): 7786–91. https://doi.org/10.1021/acs.energyfuel.8b00792
  • J. Liu, D. Obando, V. Liao, T. Lifa, and R. Codd, “The Many Faces of the Adamantly Group in Drug Design,” European Journal of Medicinal Chemistry 46, no. 6 (2011): 1949–63.
  • L. Wanka, K. Iqbal, and P. R. Schreiner, “The Lipophilic Bullet Hits the Targets: Medicinal Chemistry of Adamantane Derivatives,” Chemical Reviews 113, no. 5 (2013): 3516–604. https://doi.org/10.1021/cr100264t
  • A. A. El-Emam, E. S. Kumar, K. Janani, L. H. Al-Wahaibi, O. Blacque, M. I. El-Awady, N. H. Al-Shaalan, M. J. Percino, and S. Thamotharan, “Quantitative Assessment of the Nature of Noncovalent Interactions in N-Substituted-5-(Adamantan-1yl)-1,3,4-Thidiazole-2-Amines: Insights from Crystallographic and QTAIM Analysis,” RSC Advances 10, no. 17 (2020): 9840–53.
  • M. Kawahata, T. Hyodo, M. Tominaga, and K. Yamaguchi, “Separation of p-Xylene from Aromatic Compounds through Specific Inclusion by Acyclic Host Molecules,” CrystEngComm 20, no. 38 (2018): 5667–71.
  • Y. Tian, and G. Zhu, “Porous Aromatic Frameworks (PAFs),” Chemical Reviews 120, no. 16 (2020): 8934–86.
  • D. N. H. Meineke, M. L. Bossi, H. Ta, V. N. Belov, and S. W. Hell, “Bichromophoric Compounds with Orthogonally and Parallelly Arranged Chromophores Separated by Rigid Spacers,” Chemistry (Weinheim an Der Bergstrasse, Germany) 23, no. 10 (2017): 2469–75.
  • A. Wrona-Piotrowicz, A. Makal, and J. Zakrzewski, “Triflic Acid-Promoted Adamantylation and Tert-Butylation of Pyrene: Fluorescent Properties of Pyrene-Decorated Adamantanes and a Channeled Crystal Structure of 1,3,5-Tris(Pyren-2-yl)Adamantane,” The Journal of Organic Chemistry 85, no. 17 (2020): 11134–9.
  • H. M. Osman, T. Elsaman, B. A. Yousef, E. Elhadi, A. A. E. Ahmed, E. M. Eltayib, M. S. Mohamed, and M. A. Mohamed, “Schiff Bases of Isatin and Adamantane-1-Carbohydrazide: Synthesis, Characterization and Anticonvulsant Activity,” Journal of Chemistry 2021 (2021): 1–11.
  • H. I. Aljohar, H. A. Ghabbour, M. S. M. Abdelbaky, S. García-Granda, and A. A. El-Emam, “Crystal Structure of N'-[(1E)-(2,6-Dichlorophenyl)-Methylidene]Adamantane-1-Carbohydrazide, C18H20Cl2N2O,” Zeitschrift für Kristallographie-New Crystal Structures 231 (2016): 1037–9.
  • S. J. Armakovic, Y. S. Mary, Y. S. Mary, S. Pelemis, and S. Armakovic, “Optoelectronic Properties of the Newly Designed 1,3,5-Triazine Derivatives with Isatin, Chalcone and Acridone Moieties,” Computational and Theoretical Chemistry 1197 (2021): 113160.
  • G. Venkatesh, C. Kamal, P. Vennila, M. Govindaraju, Y. S. Mary, S. Armakovic, S. J. Armakovic, S. Kaya, and C. Y. Panicker, “Molecular Dynamic Simulations, ALIE Surface, Fukui Functions, Geometrical,Molecular Docking and Vibrational Spectra Studies of Tetra Chloro p and m-Xylene,” Journal of Molecular Structure 1171 (2018): 253–67.
  • A. A. El-Emam, and T. M. Ibrahim, “Synthesis, Anti-Inflammatory and Analgesic Activity of Certain 3-(1-Adamantyl)-4-Substituted-5-Mercapto-1,2,4-Triazole Derivatives,” Arzneimittel-Forschung/Drug Research 41 (1991): 1260–4. PMID: 1815527
  • G. S. Hassan, A. A. El-Emam, L. M. Gad, and A. E. M. Barghash, “Synthesis, Antimicrobial and Antiviral Testing of Some New 1-Adamantyl Analogues,” Saudi Pharmaceutical Journal : SPJ : The Official Publication of the Saudi Pharmaceutical Society 18, no. 3 (2010): 123–8.
  • M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, et al, “Gaussian 09, Revision B.01” (Gaussian, Inc., Wallingford, CT, 2010).
  • R. Dennington, T. Keith, and J. Millam, “Gaussview, Version 5” (Semichem Inc., Shawnee Mission, KS, 2009).
  • R. Ullah, and Y. Zheng, “Raman Spectroscopy of ‘Bisphenol A,” Journal of Molecular Structure 1108 (2016): 649–53.
  • Y. Minenkov, A. Singstad, G. Occhipinti, and V. R. Jensen, “The Accuracy of DFT-optimized geometries of functional transition metal compounds: A validation study of catalysts for olefin metathesis and other reactions in the homogeneous phase,” Dalton Transactions (Cambridge, England : 2003) 41, no. 18 (2012): 5526–41.
  • J. M. L. Martin, and C. Van Alsenoy, GAR2PED, A Program to Obtain a Potential Energy Distribution from a Gaussian Archive Record (Belgium, University of Antwerp, 2007).
  • A. V. Marenich, C. J. Cramer, and D. G. Truhlar, “Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions,” The Journal of Physical Chemistry B 113, no. 18 (2009): 6378–96. https://doi.org/10.1021/jp810292n.
  • T. Lu, and F. Chen, “Multiwfn: A Multifunctional Wavefunction Analyzer,” Journal of Computational Chemistry 33, no. 5 (2012): 580–92.
  • Y. Zhang, “I-TASSER Server for Protein 3D Structure Prediction,” BMC Bioinformatics 9 (2008): 40. https://doi.org/10.1186/1471-2105-9-40
  • C. H. M. Rodrigues, D. E. V. Pires, and D. B. Ascher, “DynaMut: Predicting the Impact of Mutations on Protein Conformation, Flexibility and Stability,” Nucleic Acids Research 46, NO. W1 (2018): W350–W355.
  • E. S. Al-Abdullah, S. H. R. Sebastian, R. I. Al-Wabli, A. A. El-Emam, C. Y. Panicker, and C. Van Alsenoy, “Vibrational Spectroscopic Studies (FT-IR, FT-Raman) and Quantum Chemical Calculations on 5-(Adamantan-1-yl)-3-[(4-Fluoroanilino)methyl]-2,3-Dihydro-1,3,4-Oxadiazole-2-Thione, a Potential Chemotherapeutic Agent,” Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy 133 (2014): 605–18.
  • K. Jalaja, Y. S. Mary, C. Y. Panicker, S. Armakovic, S. J. Armakovic, B. K. Sagar, M. Girisha, H. S. Yathirajan, and C. Van Alsenoy, “Spectroscopic Characterization of 4-[2-(5-Ethylpyridin-2yl)Ethoxy]Benzaldehyde Oxime and Investigation of Its Reactive Properties by DFT Calculations and Molecular Dynamics Simulations,” Journal of Molecular Structure 1128 (2017): 245–56. https://doi.org/10.1016/j.molstruc.2016.08.075.
  • K. Jalaja, M. A. Al-Alshaikh, Y. S. Mary, C. Y. Panicker, A. A. El-Emam, O. Temiz-Arpaci, and C. Van Alsenoy, “Vibrational Spectroscopic Investigations and Molecular Docking Studies of Biologically Active 2-[4-(4-Phenylbutanamido)Phenyl]-5-Ethylsulphonyl-Benzoxazole,” Journal of Molecular Structure 1148 (2017): 119–33.
  • P. Vennila, M. Govindaraju, G. Venkatesh, C. Kamal, Y. S. Mary, C. Y. Panicker, S. Kaya, S. Armakovic, and S. J. Armakovic, “A Complete Computational and Spectroscopic Study of 2-Bromo-1,4-dichlorobenzene - A Frequently Used Benzene Derivative,” Journal of Molecular Structure 1151 (2018): 245–55.
  • N. P. G. Roeges, A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures (New York, John Wiley and Sons Inc., 1994).
  • F. A. M. Al-Omary, Y. S. Mary, C. Y. Panicker, A. A. El-Emam, I. A. Al-Swaidan, A. A. Al-Saadi, and C. Van Alsenoy, “Spectroscopic Investigations, NBO, HOMO-LUMO, NLO Analysis and Molecular Docking of 5-(Admantan-1-yl)-3-Anilinomethyl-2,3-Dihydro-1,3,4-Oxadiazole-2-Thione, a Potential Bioactive Agent,” Journal of Molecular Structure 1096 (2015): 1–14.
  • N. G. Haress, F. Al-Omary, A. A. El-Emam, Y. S. Mary, C. Y. Panicker, A. A. Al-Saadi, J. A. War, and C. Van Alsenoy, “Spectroscopic Investigation (FT-IR and FT-Raman), Vibrational Assignments, HOMO-LUMO Analysis and Molecular Docking Study of 2-(Adamantan-1-yl)-5-(4-Nitrophenyl)-1,3,4-Oxadiazole,” Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy 135 (2015): 973–83.
  • G. Varsanyi, Assignments of Vibrational Spectra of Seven Hundred Benzene Derivatives (New York, Wiley, 1974).
  • A. Raj, Y. S. Mary, C. Y. Panicker, H. T. Varghese, K. Raju, and I. R. Raman, “ IR, Raman, SERS and Computational Study of 2-(Benzylsulfanyl)-3,5-Dinitrobenzoic Acid,” Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy 113 (2013): 28–36. https://doi.org/10.1016/j.saa.2013.04.096
  • A. S. El-Azab, Y. S. Mary, Y. S. Mary, C. Y. Panicker, A. A. M. Abdel-Aziz, M. A. Mohamed, S. Armakovic, S. J. Armakovic, and C. Van Alsenoy, “Spectroscopic and Reactive Properties of a Newly Synthesized Quinazoline Derivative: Combined Experimental, DFT, Molecular Dynamics and Docking Study,” Journal of Molecular Structure 1134 (2017): 863–81.
  • Y. Sheena Mary, Fatmah A. M. Al-Omary, Gamal A. E. Mostafa, Ali A. El-Emam, P. S. Manjula, B. K. Sarojini, B. Narayana, Stevan Armaković, Sanja J. Armaković, and C. Van Alsenoy, “Insight into the Reactive Properties of Newly Synthesized 1,2,4-Triazole Derivative by Combined Experimental (FT-IR and FT-Raman) and Theoretical (DFT and MD) Study,” Journal of Molecular Structure 1141 (2017): 542–50.
  • B. Sureshkumar, Y. S. Mary, K. S. Resmi, C. Y. Panicker, S. Armakovic, S. J. Armakovic, C. Van Alsenoy, B. Narayana, and S. Suma, “Spectroscopic Analysis of 8-Hydroxyquinoline Derivatives and Investigation of Its Reactive Properties by DFT and Molecular Dynamics Simulations,” Journal of Molecular Structure 1156 (2018): 336–47.
  • M. Hossain, R. Thomas, Y. S. Mary, K. S. Resmi, S. Armakovic, S. J. Armakovic, A. K. Nanda, G. Vijayakumar, and C. Van Alsenoy, “Understanding Reactivity of Two Newly Synthetized Imidazole Derivatives by Spectroscopic Characterization and Computational Study,” Journal of Molecular Structure 1158 (2018): 176–96.
  • G. D. R. Matos, D. Y. Kyu, H. H. Loeffler, J. D. Chodera, M. R. Shirts, and D. L. Mobley, “Approaches for Calculating Solvation Free Energies and Enthalpies Demonstrated with an Update of the FreeSolv Database,” Journal of Chemical and Engineering Data 62, no. 5 (2017): 1559–69.
  • S. Sevvanthi, S. Muthu, and M. Raja, “Quantum Mechanical, Spectroscopic Studies and Molecular Docking Analysis on 5,5-Diphenylimidazolidine-2,4-Dione,” Journal of Molecular Structure 1149 (2017): 487–98.
  • C. Adant, M. Dupuis, and J. L. Bredas, “Ab Initio Study of the Nonlinear Optical Properties of Urea: Electron Correlation and Dispersion Effects,” International Journal of Quantum Chemistry 56, NO. S29 (1995): 497–507.
  • M. Raja, R. R. Muhamed, S. Muthu, and M. Suresh, “Synthesis, Spectroscopic (FT-IR, FT-Raman, NMR, UV-Visible), First Order Hyperpolarizability, NBO and Molecular Docking Study of (E)-1-(4-Bromobenzylidene)Semicarabzide,” Journal of Molecular Structure 1128 (2017): 481–92.
  • Y. Shyma Mary, Y. Sheena Mary, K. S. Resmi, Veena S. Kumar, Renjith Thomas, and B. Sureshkumar, “Detailed Quantum Mechanical, Molecular Docking, QSAR Prediction, Photovoltaic Light Harvesting Efficiency Analysis of Benzil and Its Halogenated Analogues,” Heliyon 5, no. 11 (2019): e02825.
  • R. G. Parr, and G. Pearson, “Absolute Hardness: Companion Parameter to Absolute Electronegativity,” Journal of the American Chemical Society 105, no. 26 (1983): 7512–6.
  • R. G. Parr, L. Szentpaly, and S. Liu, “Electrophilicity Index,” Journal of the American Chemical Society 121, no. 9 (1999): 1922–4.
  • R. G. Parr, and Y. Weitao, Density Functional Theory of Atoms and Molecules (Oxford University Press, 1994).
  • L. R. Domingo, and P. Perez, “The Nucleophilicity N Index in Organic Chemistry,” Organic & Biomolecular Chemistry 9, no. 20 (2011): 7168–75. https://doi.org/10.1039/C10B05856H
  • J. L. Gazquez, A. Cedillo, and A. Vela, “Electrodonating and Electroaccepting Powers,” The Journal of Physical Chemistry A 111, no. 10 (2007): 1966–70.
  • Juan Frau, Francisco Muñoz, and Daniel Glossman-Mitnik, “Application of DFT Concepts to the Study of the Chemical Reactivity of Some Resveratrol Derivatives through the Assessment of the Validity of the Koopmans in DFT” (KID) Procedure,” Journal of Theoretical and Computational Chemistry 16, no. 01 (2017): 1750006.
  • R. A. Costa, G. A. Barros, J. N. da Silva, K. M. Oliveira, D. P. Bezerra, M. B. P. Soares, and E. V. Costa, “Experimental and Theoretical Study on Spectral Features, Reactivity, Solvation, Topoisomerase I Inhibition and in Vitro Cytotoxicity in Human HepG2 Cells of Guadiscine and Guadiscidine Aporphine Alkaloids,” Journal of Molecular Structure 1229 (2021): 129844.
  • R. A. Costa, J. N. Silva, V. G. Oliveira, L. M. Anselmo, M. M. Araujo, K. M. T. Oliveira, and R. C. S. Nunomura, “New Insights into Structural, Electronic, Reactivity, Spectroscopic and Pharmacological Properties of Bergenin: Experimental, DFT Calculations, MD and Docking Simulations,” Journal of Molecular Structure 330 (2021): 115625. https://doi.org/10.1016/j.molstruc.2021.115625
  • R. A. Costa, J. N. Silva, K. M. T. Oliveira, L. M. Dutra, and E. V. Costa, “Quantum Chemical Studies, Vibrational Analysis, Molecular Dynamics and Docking Calculations of Some Ent-Kaurane Diterpenes from Annona Vepretorum: A Theoretical Approach to Promising anti-Tumor Molecules,” Structural Chemistry 31, no. 3 (2020): 1223–43.
  • Y. Z. Zheng, G. Deng, Q. Liang, D. F. Chen, R. Guo, and R. C. Lai, “Antioxidant Activity of Quercetin and Its Glucosides from Propolis: A Theoretical Study,” Scientific Reports 7, no. 1 (2017): 7543. https://doi.org/10.1038/s41598-017-08024-8
  • B. Sureshkumar, Y. S. Mary, C. Y. Panicker, K. S. Resmi, S. Suma, S. Armakovic, S. J. Armakovic, and C. Van Alsenoy, “Spectroscopic Analysis of 8-Hydroxyquinoline-5-Sulphonic Acid and Investigation of Its Reactive Properties by DFT and Molecular Dynamics Simulations,” Journal of Molecular Structure 1150 (2017): 540–52.
  • S. Sakthivel, T. Alagesan, S. Muthu, Christina Susan Abraham, and E. Geetha, “Quantum Mechanical, Spectroscopic Study (FT-IR and FT-Raman), NBO Analysis, HOMO-LUMO, First Order Hyperpolarizability and Docking Studies of a Non-Steroidal anti-Inflammatory Compound,” Journal of Molecular Structure 1156 (2018): 645–56. https://doi.org/10.1016/j.molstruc.2017.12.024
  • P. Sjoberg, and P. Politzer, “Use of the Electrostatic Potential at the Molecular Surface to Interpret and Predict Nucleophilic Processes,” The Journal of Physical Chemistry 94, no. 10 (1990): 3959–61.
  • P. K. Weiner, R. Langridge, J. M. Blaney, R. Schaefer, and P. A. Kollman, “Electrostatic Potential Molecular Surfaces,” Proceedings of the National Academy of Sciences of the United States of America 79, no. 12 (1982): 3754–8.
  • M. Orozco, and F. J. Luque, “Generalization of the Molecular Electrostatic Potential for the Study of Noncovalent Interactions,” Theoretical and Computational Chemistry 3 (1996): 181–218. https://doi.org/10.1016/S1380-7423(96)80044-6
  • Peter Politzer, Jane S. Murray, and Felipe A. Bulat, “Average Local Ionization Energy: A Review,” Journal of Molecular Modeling 16, no. 11 (2010): 1731–42.
  • R. G. Parr, and W. Yang, “Density Functional Approach to the Frontier Electron Theory of Chemical Reactivity,” Journal of the American Chemical Society 106, no. 14 (1984): 4049–50.
  • P. W. Ayers, and R. G. Parr, “Variational Principles for Describing Chemical Reactions: The Fukui Function and Chemical Hardness Revisited,” Journal of the American Chemical Society 122, no. 9 (2000): 2010–8.
  • C. Morell, A. Grand, and A. Toro-Labbe, “New Dual Descriptor for Chemical Reactivity,” The Journal of Physical Chemistry A 109, no. 1 (2005): 205–12.
  • J. I. Martinez-Araya, “Why is the Dual Descriptor a More Accurate Local Reactivity Descriptor than Fukui Functions?,” Journal of Mathematical Chemistry 53 (2015): 451–65. https://doi.org/10.1007/s10910-014-0437-7
  • J. S. Al-Otaibi, Y. S. Mary, S. Armakovic, and R. Thomas, “Hybrid and Bioactive Cocrystals of Pyrazinamide with Hydroxybenzoic Acids: Detailed Study of Structure, Spectroscopic Characteristics, Other Potential Applications and Noncovalent Interactions Using SAPT,” Journal of Molecular Structure 1202 (2020): 127316.
  • A. Lagunin, A. Stepanchikova, D. Filimonov, and V. Poroikov, “PASS: Prediction of Activity Spectra for Biologically Active Substances,” Bioinformatics (Oxford, England) 16, no. 8 (2000): 747–8.
  • I. K. Moiseev, S. A. Kon’kov, K. A. Ovchinnikov, N. M. Kilyaeva, K. M. Bormasheva, O. N. Nechaeva, M. V. Leonova, Y. N. Klimochkin, S. M. Balakhnin, N. I. Bormotov, et al, “Synthesis and Antiviral Activity of New Adamantane Derivatives,” Pharmaceutical Chemistry Journal 45, no. 10 (2012): 588–92., https://doi.org/10.1016/s0014-827x(00)00075-6
  • O. Trott, and A. J. Olson, “AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization and Multithreading,” Journal of Computational Chemistry 31, no. 2 (2010): 455–61.
  • B. Kramer, M. Rarey, and T. Lengauer, “Evaluation of the FlexX Incremental Construction Algorithm for Protein Ligand Docking,” Proteins: Structure, Function, and Genetics 37, no. 2 (1999): 228–41. https://doi.org/10.1002/(SICI)1097-0134(19991101)37:2 < 228::AID-PROT8 > 3.0.CO:2-8
  • K. Haruna, V. S. Kumar, Y. S. Mary, S. A. Popoola, R. Thomas, M. S. Roxy, and A. A. Al-Saadi, “Conformational Profile, Vibrational Assignments, NLO Properties and Molecular Docking of Biologically Active herbicide1,1-dimethyl-3-phenylurea ,” Heliyon 5, no. 6 (2019): e01987.
  • Karen N. Lentz, Allen D. Smith, Sheila C. Geisler, Stuart Cox, Peter Buontempo, Angela Skelton, Jason DeMartino, Edward Rozhon, Jerome Schwartz, V. Girijavallabhan, et al, “Structure of Poliovirus type2 Lansing Complexed with Antiviral Agent SCH48973: Comparison of the Structural and Biological Properties of the Three Poliovirus Serotypes Structure,” Structure 5, no. 7 (1997): 961–78.,.
  • X. Liu, D. Shi, S. Zhou, H. Liu, H. Liu, and X. Yao, “Molecular Dynamics Simulations and Novel Drug discovery,” Expert Opin Drug Discov 13, no. 1 (2018): 23–37.
  • H. Liu, and X. Yao, “Molecular Basis of the Interaction for an Essential Subunit PA-PB1 in Influenza Virus RNA Polymerase: Insights from Molecular Dynamics Simulation and Free Energy Calculation,” Molecular Pharmaceutics 7, no. 1 (2010): 75–85.
  • W. M. Berhanu, and A. E. Masunov, “Molecular Dynamic Simulation of Wild Type and Mutants of the Polymorphic Amyloid NNQNTF Segments of Elk Prion: Structural Stability and Thermodynamic of Association,” Biopolymers 95, no. 9 (2011): 573–90.
  • S. H. Chong, C. Lee, G. Kang, M. Park, and S. Ham, “Structural and Thermodynamic Investigations on the Aggregation and Folding of Acylphosphatase by Molecular Dynamics Simulations and Solvation Free Energy Analysis,” Journal of the American Chemical Society 133, no. 18 (2011): 7075–83.
  • N. Nagasundaram, H. Zhu, J. Liu, V. Karthick, C. G. P. Doss, C. Chakraborty, and L. Chen, “Analysing the Effect of Mutation on Protein Function and Discovering Potential Inhibitors of CDK4: Molecular Modelling and Dynamics Studies,” PloS One 10, no. 8 (2015): e0133969.
  • M. Y. Lobanov, N. S. Bogatyreva, and O. V. Galzitskaya, “Radius of Gyration as an Indicator of Protein Structure Compactness,” Molecular Biology 42, no. 4 (2008): 623–8. https://doi.org/10.1134/S00268933040195
  • D. M. Smilgies, and E. Folta-Stogniew, “Molecular Weight-Gyration Radius Relation of Globular Proteins: A Comparison of Light Scattering, Small-Angle X-Ray Scattering and Structure-Based Data,” Journal of Applied Crystallography 48, no. Pt 5 (2015): 1604–6.
  • M. T. Khan, A. Ali, Q. Wang, M. Irfan, A. Khan, M. T. Zeb, Y. J. Zhang, S. Chinnasamy, and D. Q. Wei, “Marine Natural Compounds as Potents Inhibitors against the Main Protease of SARS-CoV-2, a Molecular Dynamic Study,” Journal of Biomolecular Structure and Dynamics 39 (2021): 1–14. https://doi.org/10.1080/07391102.2020.1769733
  • B. Chugh, A. K. Singh, A. Chaouiki, R. Salghi, S. Thakur, and B. Pani, “A Comprehensive Study about anti-Corrosion Behavior of Pyrazine Carbohydrazide: Gravimetric, Electrochemical, Surface and Theoretical Study,” Journal of Molecular Liquids 299 (2020): 112160. https://doi.org/10.1016/j.molliq.2019.112160
  • L. H. Al-Wahaibi, N. Alvarez, O. Blacque, N. Veiga, A. A. Al-Mutairi, and A. A. El-Emam, “Synthesis and Structure Insights of Two Novel Broad-Spectrum of Antibacterial Candidates Based on (E)-N’-[(Heteroaryl)Methylene]Adamantane-1-Carbohydrazides,” Molecules 25, no. 8 (2020): 1934. https://doi.org/10.3390/molecules25081934

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.