122
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Design, Synthesis, and In Silico Molecular Docking Study of Some Novel Thiochromene Derivatives with Antimicrobial Potential

ORCID Icon, & ORCID Icon
Pages 6760-6779 | Received 16 May 2021, Accepted 03 Feb 2022, Published online: 24 Feb 2022

References

  • S. B. Levy, “The 2000 Garrod Lecture. Factors Impacting on the Problem of Antibiotic Resistance,” The Journal of Antimicrobial Chemotherapy 49, no. 1 (2002): 25–30.
  • S. Luthra, A. Rominski, and P. Sander, “The Role of Antibiotic-Target-Modifying and Antibiotic-Modifying Enzymes in Mycobacterium abscessus Drug Resistance,” Frontiers in Microbiology 9 (2018): 2179.
  • T. Parish, “Steps to Address Anti-Microbial Drug Resistance in Today's Drug Discovery,” Expert Opinion on Drug Discovery 14, no. 2 (2019): 91–4.
  • W.-B. Ho, L. R. Wright, E. D. Turtle, C. Mossman, and L. A. Flippin, “Thiochromene Derivatives as HIF Hydroxylase Inhibitors,” (Google Patents, 2015).
  • N. Sakauchi, H. Furukawa, J. Shirai, A. Sato, H. Kuno, R. Saikawa, and M. Yoshida, “Identification of 3,4-Dihydro-2H-Thiochromene 1,1-Dioxide Derivatives with a Phenoxyethylamine Group as Highly Potent and Selective α1D Adrenoceptor Antagonists,” European Journal of Medicinal Chemistry 139 (2017): 114–27.
  • R. Roy, S. Rakshit, T. Bhowmik, S. Khan, A. Ghatak, S. Bhar. “Substituted 3-E-styryl-2 H-chromenes and 3-E-styryl-2 H-thiochromenes: synthesis, photophysical studies, anticancer activity, and exploration to tricyclic benzopyran skeleton,” The Journal of Organic Chemistry 79 (2014): 6603–6614
  • A. G. Alshammari, A.-R. B. El-Gazzar, and H. N. Hafez, “Efficient Synthesis of a New Class of N-Nucleosides of 4H-Thiochromeno [2, 3-d] Pyrimidine-10-Sulfone as Potential Anticancer and Antibacterial Agents,” International Journal of Organic Chemistry 2013 (2013).
  • A. Barakat, M. S. Islam, M. Ali, A. M. Al-Majid, S. Alshahrani, A. S. Alamary, S. Yousuf, and M. I. Choudhary, “Regio-and Stereoselective Synthesis of a New Series of Spirooxindole Pyrrolidine Grafted Thiochromene Scaffolds as Potential Anticancer Agents,” Symmetry 13, no. 8 (2021): 1426.
  • P. T. Kaye, M. A. Musa, A. T. Nchinda, and X. W. Nocanda, “Novel Heterocyclic Analogues of the HIV‐1 Protease Inhibitor, Ritonavir,” Synthetic Communications 34, no. 14 (2004): 2575–89.
  • M. Ferraroni, F. Carta, A. Scozzafava, and C. T. Supuran, “Thioxocoumarins Show an Alternative Carbonic Anhydrase Inhibition Mechanism Compared to Coumarins,” Journal of Medicinal Chemistry 59, no. 1 (2016): 462–73.
  • R. Choubey, N. Choubey, and G. Garg, “Antimicrobial Activity of Newly Synthesized Pyrazolidine-3, 5-Dione Substituted Thiochromene Derivatives,” Research Journal of Pharmacy and Technology 8, no. 9 (2015): 1250–8.
  • T. Ben Hadda, A. Kerbal, B. Bennani, G. A. Houari, M. Daoudi, A. C. L. Leite, V. H. Masand, R. D. Jawarkar, and Z. Charrouf, “Molecular Drug Design, Synthesis and Pharmacophore Site Identification of Spiroheterocyclic Compounds: Trypanosoma crusi Inhibiting Studies,” Medicinal Chemistry Research 22, no. 1 (2013): 57–69.
  • G. Wang, G. Yang, Z. Ma, W. Tian, B. Fang, and L. Li, Synthesis and Antifungal Activity of Some 6H-Thiochromeno [4, 3-b] Quinolines,” International Journal of Chemistry 2, no. 1 (2010): 19.
  • N. P. Badiger, S. L. Gaonkar, and N. S. Shetty, “Synthesis of Some New Thienopyrimidines and Triazole Fused Thienopyrimidines and Their Antimicrobial Activities,” ” International Journal of Chemical and Pharmaceutical Sciences 6 (2015): 59–62.
  • D.-J. Wang, Z. Hou, H. Xu, R. An, X. Su, and C. Guo, “Design, Synthesis, and Biological Evaluation of 4-Chloro-2H-Thiochromenes Featuring Nitrogen-Containing Side Chains as Potent Antifungal Agents,” Bioorganic & Medicinal Chemistry Letters 28, no. 22 (2018): 3574–8.
  • R. Mishra, N. Sachan, N. Kumar, I. Mishra, and P. Chand, “Thiophene Scaffold as Prospective Antimicrobial Agent: A Review,” Journal of Heterocyclic Chemistry 55, no. 9 (2018): 2019–34.
  • N. A. Elkanzi, R. B. Bakr, and A. A. Ghoneim, “Design, Synthesis, Molecular Modeling Study, and Antimicrobial Activity of Some Novel Pyrano [2, 3‐b] Pyridine and Pyrrolo [2, 3‐b] Pyrano [2.3‐d] Pyridine Derivatives,” Journal of Heterocyclic Chemistry 56 (2019): 406–16.
  • R. B. Bakr and N. A. Elkanzi, “Preparation of Some Novel Thiazolidinones, Imidazolinones, and Azetidinone Bearing Pyridine and Pyrimidine Moieties with Antimicrobial Activity,” Journal of Heterocyclic Chemistry 57, no. 7 (2020): 2977–89.
  • E. M. Sharshira and N. M. M. Hamada, “Synthesis and Antimicrobial Evaluation of Some Pyrazole Derivatives,” Molecules (Basel, Switzerland) 17, no. 5 (2012): 4962–71.
  • B. P. Bandgar, S. S. Gawande, R. G. Bodade, N. M. Gawande, and C. N. Khobragade, “Synthesis and Biological Evaluation of a Novel Series of Pyrazole Chalcones as Anti-Inflammatory, Antioxidant and Antimicrobial Agents,” Bioorganic & Medicinal Chemistry 17, no. 24 (2009): 8168–73.
  • M. A. Elsherif, A. S. Hassan, G. O. Moustafa, H. M. Awad, and N. M. Morsy, “Antimicrobial Evaluation and Molecular Properties Prediction of Pyrazolines Incorporating Benzofuran and Pyrazole Moieties,” Journal of Applied Pharmaceutical Science 10 (2020): 37–43.
  • M. V. Raimondi, S. Cascioferro, D. Schillaci, and S. Petruso, “Synthesis and Antimicrobial Activity of New Bromine-Rich Pyrrole Derivatives Related to Monodeoxypyoluteorin,” European Journal of Medicinal Chemistry 41, no. 12 (2006): 1439–45.
  • M. Maruthapandi, K. Sharma, J. H. Luong, and A. Gedanken, “Antibacterial Activities of Microwave-Assisted Synthesized Polypyrrole/Chitosan and Poly (pyrrole-N-(1-Naphthyl) Ethylenediamine) Stimulated by C-Dots,” Carbohydrate Polymers 243 (2020): 116474.
  • D. Unluer, A. A. Kamiloglu, S. Direkel, E. Bektas, H. Kantekin, and K. Sancak, “Synthesis and Characterization of Metallophthalocyanine with Morpholine Containing Schiff Base and Determination of Their Antimicrobial and Antioxidant Activities,” Journal of Organometallic Chemistry 900 (2019): 120936.
  • H. Bektaş, Ş. Ceylan, N. Demirbaş, Ş. Alpay-Karaoğlu, and B. B. Sökmen, “Antimicrobial and Antiurease Activities of Newly Synthesized Morpholine Derivatives Containing an Azole Nucleus,” Medicinal Chemistry Research : An International Journal for Rapid Communications on Design and Mechanisms of Action of Biologically Active Agents 22, no. 8 (2013): 3629–39.
  • S. Shahzadi, S. Ali, M. H. Bhatti, M. Fettouhi, and M. Athar, “Chloro-Diorganotin (IV) Complexes of 4-Methyl-1-Piperidine Carbodithioic Acid: Synthesis, X-Ray Crystal Structures, Spectral Properties and Antimicrobial Studies,” Journal of Organometallic Chemistry 691, no. 8 (2006): 1797–802.
  • M. R. Aouad, “Click Synthesis and Antimicrobial Screening of Novel Isatin-1, 2, 3-Triazoles with Piperidine, Morpholine, or Piperazine Moieties,” Organic Preparations and Procedures International 49, no. 3 (2017): 216–27.
  • N. O. Boadi, M. Degbevi, S. A. Saah, M. Badu, L. S. Borquaye, and N. K. Kortei, “Antimicrobial Properties of Metal Piperidine Dithiocarbamate Complexes against Staphylococcus aureus and Candida albicans,” Scientific African 12 (2021): e00846.
  • W. Kasekarn, R. Sirawaraporn, T. Chahomchuen, A. F. Cowman, and W. Sirawaraporn, “Molecular Characterization of Bifunctional Hydroxymethyldihydropterin Pyrophosphokinase-Dihydropteroate Synthase from Plasmodium falciparum,” Molecular and Biochemical Parasitology 137, no. 1 (2004): 43–53.
  • V. Gorelova, L. Ambach, F. Rébeillé, C. Stove, and D. Van Der Straeten, “Folates in Plants: Research Advances and Progress in Crop Biofortification,” Frontiers in Chemistry 5 (2017): 21.
  • M. W. Irvine, Agents Acting on Pyrimidine Metabolism. Antimalarial Agents (UK: Elsevier, 2020), 133–85.
  • H. Yang, X. Zhang, Y. Liu, L. Liu, J. Li, G. Du, et al. “Synthetic biology-driven microbial production of folates: Advances and perspectives,” Bioresource Technology 324 (2021): 124624.
  • C. R. Bourne, “Utility of the Biosynthetic Folate Pathway for Targets in Antimicrobial Discovery,” Antibiotics (Basel, Switzerland) 3, no. 1 (2014): 1–28.
  • K. Pal, A. Heinsch, A. Berkessel, and A. L. Koner, “Differentiation of Folate-Receptor-Positive and Negative Cells Using a Substrate Mimicking Fluorescent Probe,” Microscopy 3 (2017): 6.
  • S. H. Satuluri, S. K. Katari, C. Pasala, and U. Amineni, “Novel and Potent Inhibitors for Dihydropteroate Synthase of Helicobacter pylori,” Journal of Receptor and Signal Transduction Research 40, no. 3 (2020): 246–56.
  • J. R. Suh, A. K. Herbig, and P. J. Stover, “New Perspectives on Folate Catabolism,” Annual Review of Nutrition 21 (2001): 255–82.
  • N. A. A. Elkanzi, H. Hrichi, R. B. Bakr, O. Hendawy, M. M. Alruwaili, E. D. Alruwaili, R. W. Almamtrfi, and H. K. Alsharary, “Synthesis, In Vitro Evaluation and Molecular Docking of New Pyrazole Derivatives Bearing 1, 5, 10, 10a-Tetrahydrobenzo [g] Quinoline-3-Carbonitrile Moiety as Potent Antibacterial Agents,” Journal of the Iranian Chemical Society 18, no. 4 (2021): 977–15.
  • A. A. Ghoneim, A. F. El-Farargy, and R. B. Bakr, “Design, Synthesis, Molecular Docking of Novel Substituted Pyrimidinone Derivatives as Anticancer Agents,” Polycyclic Aromatic Compounds (2020): 1–17.
  • N. A. Elkanzi and R. B. Bakr, “Microwave Assisted, Antimicrobial Activity and Molecular Modeling of Some Synthesized Newly Pyrimidine Derivatives Using 1, 4-Diazabicyclo [2.2. 2] Octane as a Catalyst,” Letters in Drug Design & Discovery 17, no. 12 (2020): 1538–51.
  • H. Hrichi, E. N. A. Ahmed, and B. R. Badawy, “Novel β-Lactams and Thiazolidinone Derivatives from 1, 4-Dihydroquinoxaline Schiff’s Base: Synthesis, Antimicrobial Activity and Molecular Docking Studies,” Chemistry Journal of Moldova 15, no. 1 (2020): 86–94.
  • R. B. Bakr, N. A. Elkanzi, A. A. Ghoneim, and S. Moustafa, “Synthesis, Molecular Docking Studies and In Vitro Antimicrobial Evaluation of Novel Pyrimido [1, 2-a] Quinoxaline and Triazino [4, 3-a]-Quinoxaline Derivatives,” Heterocycles 96, no. 11 (2018): 1941–57.
  • N. A. A. Elkanzi, A. A. Ghoneim, and R. B. Bakr, “Design, Efficient Synthesis and Antimicrobial Evaluation of Some Novel Pyrano [2, 3-b][1, 8] Naphthyridine and Pyrrolo [2, 3-f][1, 8] Naphth-Yridine Derivatives,” Pharma Chemica 11 (2019): 6–13.
  • A. A. Ghoneim, N. A. Ahmed Elkanzi, and R. B. Bakr, “Synthesis and Studies Molecular Docking of Some New Thioxobenzo [g] Pteridine Derivatives and 1, 4-Dihydroquinoxaline Derivatives with Glycosidic Moiety,” Journal of Taibah University for Science 12, no. 6 (2018): 774–82.
  • I. H. El Azab and N. A. Elkanzi, “Synthesis and Pharmacological Evaluation of Some New Chromeno [3, 4‐c] Pyrrole‐3, 4‐Dione‐Based N‐Heterocycles as Antimicrobial Agents,” Journal of Heterocyclic Chemistry 54, no. 2 (2017): 1404–14.
  • I. H. El Azab and N. A. Elkanzi, “Design, Synthesis, and Antimicrobial Evaluation of New Annelated Pyrimido [2, 1-c][1, 2, 4] Triazolo [3, 4-f][1, 2, 4] Triazines,” Molecules 25, no. 6 (2020): 1339.
  • M. A. Abdelgawad, A. Musa, A. H. Almalki, S. I. Alzarea, E. M. Mostafa, M. M. Hegazy, G. Mostafa-Hedeab, M. M. Ghoneim, D. G. T. Parambi, R. B. Bakr, et al, “Novel Phenolic Compounds as Potential Dual EGFR and COX-2 Inhibitors: Design, Semisynthesis, In Vitro Biological Evaluation and In Silico Insights,” Drug Design,” Drug Design, Development and Therapy 15 (2021): 2325–37.
  • I. H. El Azab, R. B. Bakr, and N. A. Elkanzi, “Facile One-Pot Multicomponent Synthesis of Pyrazolo-Thiazole Substituted Pyridines with Potential anti-Proliferative Activity: Synthesis, In Vitro and In Silico Studies,” Molecules 26, no. 11 (2021): 3103.
  • I. H. El Azab, H. S. El-Sheshtawy, R. B. Bakr, and N. A. A. Elkanzi, “New 1, 2, 3-Triazole-Containing Hybrids as Antitumor Candidates: Design, Click Reaction Synthesis, DFT Calculations, and Molecular Docking Study,” Molecules 26, no. 3 (2021): 708.
  • K. N. Al-Shammri, N. A. Elkanzi, W. A. Arafa, I. O. Althobaiti, R. B. Bakr, and S. M. N. Moustafa, “Novel Indan-1, 3-Diones Derivatives: Design, Green Synthesis, Effect against Tomato Damping-off Disease Caused by Fusarium oxysporum and In Silico Molecular Docking Study,” Arabian Journal of Chemistry (2022): 103731.
  • M. A. Abdelgawad, M. M. Al-Sanea, A. Musa, M. Elmowafy, A. K. El-Damasy, A. A. Azouz, M. M. Ghoneim, and R. B. Bakr, “Docking Study, Synthesis, and anti-Inflammatory Potential of Some New Pyridopyrimidine-Derived Compounds,” Journal of Inflammation Research 15 (2022): 451–63.
  • R. B. Bakr, I. H. E. Azab, and N. A. Elkanzi, “Thiochromene Candidates: Design, Synthesis, Antimicrobial Potential and In Silico Docking Study,” Journal of the Iranian Chemical Society (2021): 1–11.
  • S. A. Komykhov, K. S. Ostras, A. R. Kostanyan, S. M. Desenko, V. D. Orlov, and H. Meier, “The Reaction of Amino‐Imidazoles,‐Pyrazoles and‐Triazoles with α, β‐Unsaturated Nitriles,” Journal of Heterocyclic Chemistry 42, no. 6 (2005): 1111–6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.