147
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Quantum Mechanical Investigation into the Adsorption Pattern of Clomipramine and Methotrimeprazine HCl with Graphene and Fullerene

, , &
Pages 2219-2232 | Received 16 Jul 2021, Accepted 03 Feb 2022, Published online: 26 Feb 2022

References

  • Beata Morak-Młodawska, Kinga Suwińska, Krystian Pluta, and Małgorzata Jeleń, “10-(3‘-Nitro-4‘-Pyridyl)-1,8-Diazaphenothiazine as the Double Smiles Rearrangement Product,” Journal of Molecular Structure. 1015 (2012): 94–8.
  • Yasushi Mizuno, Keizo Sato, Toshiyuki Sano, Rina Kurihara, Takashi Kojima, Yoshinori Yamakawa, Akira Ishii, and Yoshinao Katsumata, “Identification and Characterization of 17 Phenothiazine Compounds by Capillary High Performance Liquid Chromatography/Fast Atom Bombardment Mass Spectrometry,” Legal Medicine (Tokyo, Japan) 4, no. 4 (2002): 207–16.
  • T. Takada, K. Kawai, M. Fujitsuka, and T. Majima, “Rapid long-distance hole transfer through consecutive adenine sequence,” Journal of the American Chemical Society 128, no. 34 (2006): 11012–3.
  • E. A. Weiss, M. J. Ahrens, L. E. Sinks, M. A. Ratner, and M. R. Wasielewski, “Solvent Control of spin-dependent charge recombination mechanisms within donor-conjugated bridge-acceptor molecules,” Journal of the American Chemical Society 126, no. 31 (2004): 9510–1.
  • D. C. Le, C. J. Morin, M. Beljean, A. M. Siouffi, and P. L. Desbène, “Electrophoretic Separations of Twelve Phenothiazines and N-demethyl derivatives by using capillary zone electrophoresis and micellar electrokinetic chromatography with non ionic surfactant,” Journal of Chromatography. A 1063, no. 1-2 (2005): 235–7.
  • J. Karpinska, H. Y. Tarasiewicz, and B. Branch, “Application of the Coupled Redox and Complexation Reactions to Flow Injection Spectrophotometric Determination of Promazine,” Analytical Letters. 30 (1997): 2365–75.
  • J. A. Cogordan, M. Mayoral, E. Angeles, R. A. Toscano, and R. MartiNez, “Neuroleptic and Antidepressant Tricyclic Compunds: Theoretical Study for Predicting Their Biological Activity by Semiempirical, Density Functional and Hartree-Fock Methods,” International Journal of Quantum Chemistry 71, no. 5 (1999): 415–32.
  • D. Pan, L. C. T. Shoute, and D. L. Phillips, “Time Resolved Resonance Raman and Density Functional Study of the Radical Cation of Promazine,” The Journal of Physical Chemistry A 103, no. 34 (1999): 6851–61.
  • F. A. Beebe, R. L. Barkin, and S. A. Barkin, “A Clinical and pharmacologic review of skeletal muscle relaxants for musculoskeletal conditions,” American Journal of Therapeutics 12, no. 2 (2005): 151–71.
  • J. Y. Chen, L. S. Brunauer, F. C. Chu, C. M. Helsel, M. M. Gedde, and W. H. Huestis, “Selective Amphipathic Nature of Chlorpromazine Binding to Plasma Membrane Bilayers,” Biochimica et Biophysica Acta (BBA) - Biomembranes 1616, no. 1 (2003): 95–105.
  • M. Pickholz, O. N. Oliveira, and M. S. Skaf, “Molecular Dynamics Simulations of Neutral Chlorpromazine in Zwitterionic Phospholipid Monolayers,” The Journal of Physical Chemistry. B 110, no. 17 (2006): 8804–14.
  • Federica Cavaliere, Alessandra Fornarelli, Fabio Bertan, Rossella Russo, Anaïs Marsal-Cots, Luigi Antonio Morrone, Annagrazia Adornetto, Maria Tiziana Corasaniti, Daniele Bano, Giacinto Bagetta, et al, “The tricyclic antidepressant clomipramine inhibits neuronal autophagic flux,” Scientific Reports 9, no. 1 (2019): 4881.
  • M. A. Rub, J. M. Khan, N. Azum, and A. M. Asiri, “Influence of Antidepressant Clomipramine Hydrochloride Drug on Human Serum Albumin: Spectroscopic Study,” Journal of Molecular Liquids 241 (2017): 91–8.
  • A. Kinal, and N. Acar, “A DFT and TD-DFT Study on Intermolecular Charge Transfer Complexes of Pyrene with Phenothiazine and Promazine,” Journal of Molecular Structure: Theochem. 949, no. 1-3 (2010): 36–40.
  • María Eugenia Manzur, and Silvia Antonia Brandán, “S(-) and R(+) Species Derived from Antihistaminic Promethazine Agent: structural and Vibrational Studies,” Heliyon 5, no. 9 (2019): e02322.
  • L. H. He, X. Wan, B. Liu, J. Wang, Y. G. Sun, and S. K. Xu, “Study on the Sonodynamic Activity and Mechanism of Promethazine Hydrochloride by multi-spectroscopic techniques,” Spectrochim Acta A Mol Biomol Spectrosc 81, no. 1 (2011): 698–705.
  • Mohammad Baig, Safikur Rahman, Gulam Rabbani, Mohd Imran, Khurshid Ahmad, and Inho Choi, “Multi-Spectroscopic Characterization of Human Serum Albumin Binding with Cyclobenzaprine Hydrochloride: Insights from Biophysical and in Silico Approaches,” International Journal of Molecular Sciences 20, no. 3 (2019): 662.
  • E. B. Ituen, M. M. Solomon, S. A. Umoren, and O. Akaranta, “Corrosion Inhibition by Amitriptyline and Amitriptyline Based Formulations for Steels in Simulated Pickling and Acidizing Media,” Journal of Petroleum Science and Engineering 174 (2019): 984–96.
  • K. A. AlAqad, R. Suleiman, O. C. S. Al-Hamouz, and T. A. Saleh, “Novel Graphene Modified Carbon-Paste Electrode for Promazine Detection by Sqaure Wave Voltametry,” Journal of Molecular Liquids 252 (2018): 75–82.
  • Jun Haginaka, Kanae Nishimura, Tetsutaro Kimachi, Kiyofumi Inamoto, Yoshiji Takemoto, and Yusuke Kobayashi, “Retention and Molecular Recognition Mechanisms of Molecularly Imprinted Polymers for Promzine Derivatives,” Talanta 205 (2019): 120149.
  • D. N. Bateman, “Tricyclic Antidepressant poisoning: central nervous system effects and management,” Toxicological Reviews 24, no. 3 (2005): 181–6.
  • J. W. Commission, F. Karoum, R. J. Reiffenstein, and N. H. Neff, “Cyclobenzaprine: A Possible Mechanism of Action for Its Muscle Relaxant Effect,” Canadian Journal of Physiology and Pharmacology 59, no. 1 (1981): 37–44.
  • Y. S. Mary, P. J. Jojo, C. Van Alsenoy, M. Kaur, M. S. Siddegowda, H. S. Yathirajan, H. I. S. Nogueira, and S. M. A. Cruz, “Vibrational Spectroscopic Studies (FT-IR, FT-Raman, SERS) and quantum chemical calculations on cyclobenzaprinium salicylate,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 120 (2014): 340–50.
  • A. Nicolai, B. G. Sumpter, and V. Meunier, “Tunable Water Desalination across Graphene Oxide Framework Membranes,” Physical Chemistry Chemical Physics : PCCP 16, no. 18 (2014): 8646–54.
  • Martin Sweetman, Steve May, Nick Mebberson, Phillip Pendleton, Krasimir Vasilev, Sally Plush, and John Hayball, “Activated Carbon, Carbon Nanotubes and Graphene: materials and Composites for Advanced Water Purification,” C 3, no. 4 (2017): 18–29.
  • A. Al-Jumaili, S. Alancherry, K. Bazaka, and M. Jacob, “Review on the Antimicrobial Properties of Carbon Nanostructures,” Materials 10, no. 9 (2017): 1066.
  • Y. Jiang, J. Wang, L. Malfatti, D. Carboni, N. Senes, and P. Innocenzi, “Highly Durable Graphene Mediated Surface Enhanced Raman Scattering (G-SERS) Nanocomposites for Molecular Detection,” Applied Surface Science. 450 (2018): 451–60.
  • M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, et al, (2010). Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT.
  • R. D. Dennington, T. A. Keith, and J. M. Millam, (2008). GaussView, Gaussian Inc.
  • J. S. Al-Otaibi, Y. S. Mary, Y. S. Mary, S. Kaya, and G. Serdaroglu, “DFT Computational Study of Trihalogenated Aniline Derivative’s Adsorption onto Graphene/Fullerene/Fullerene-like Nanocages, X12Y12 (X = Al, B and Y = N,P),” Journal of Biomolecular Structure and Dynamics (2021): 1–14.
  • Bio-Rad Laboratories, Inc., SpectraBase; http://spectrabase.com/.
  • J. D. Chai, and M. Head-Gordon, “Long-Range Corrected Hybrid Density Functionals with Damped Atom-Atom Dispersion Corrections,” Physical Chemistry Chemical Physics : PCCP 10, no. 44 (2008): 6615–20.
  • T. Lu, and F. Chen, “Multiwfn: A Multifunctional Wavefunction Analyzer,” Journal of Computational Chemistry 33, no. 5 (2012): 580–92.
  • W. Humphrey, A. Dalke, and K. Schulten, “VMD: Visual Molecular Dynamics,” Journal of Molecular Graphics. 14, no. 1 (1996): 33–8.
  • E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, C. C. Meng, and T. E. Ferrin, “UCSF Chimera-a Visualization System for Exploratory Research and Analysis,” Journal of Computational Chemistry 25, no. 13 (2004): 1605–12.
  • J. C. García, E. R. Johnson, S. Keinan, R. Chaudret, J. P. Piquemal, D. N. Beratan, and W. Yang, “NCIPLOT: A Program for Plotting non-covalent interaction regions,” Journal of Chemical Theory and Computation 7, no. 3 (2011): 625–32.
  • E. R. Johnson, S. Keinan, P. M. Sánchez, J. C. García, A. J. Cohen, and W. Yang, “Revealing Noncovalent Interactions,” Journal of the American Chemical Society 132, no. 18 (2010): 6498–506.
  • D. Duhovny, R. Nussinov, and H. J. Wolfson, 2452 (2000): 185–200. Efficient unbound docking of rigid molecules, in: Gusfield D. (Eds.), Proceedings of the second workshop on algorithms in bioinformatics (WABI). Rome, Italy. Lecture notes in computer science. Springer Verlag.
  • D. Schneidman-Duhovny, Y. Inbar, R. Nussinov, and H. J. Wolfson, “Patchdock and Symmdock: servers for Rigid and Symmetric Docking,” Nucleic Acids Research 33, no. Web Server issue (2005): W363–W367.
  • M. L. Connolly, “Analytical Molecular Surface Calculation,” Journal of Applied Crystallography 16, no. 5 (1983): 548–58.
  • Y. S. Mary, Y. S. Mary, K. S. Resmi, and R. Thomas, “DFT and Molecular Docking Investigations of Oxicam Derivatives,” Heliyon 5, no. 7 (2019): e02175.
  • F. Guo, S. C. Li, L. Wang, and D. Zhu, “Protein-Protein Binding Site Identification by Enumerating the Configurations,” BMC Bioinformatics 13 (2012): 158. https://www.biomedcentral.com/1471-2105/13/158.
  • C. Zhang, J. Chen, and C. De Lisi, “Protein-Protein Recognition: exploring the Energy Funnels near the binding sites,” Proteins: Structure, Function, and Genetics 34, no. 2 (1999): 255–67.
  • N. P. G. Roeges, (1994. ). A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures. John Wiley and Sons Inc. New York.
  • A. S. El-Azab, Y. S. Mary, Y. S. Mary, C. Y. Panicker, A. A. M. Abdel-Aziz, M. A. El-Sherbeny, S. Armakovic, S. J. Armakovic, and C. Van Alsenoy, “Newly Synthesized Dihydroquinazoline Derivative from the Aspect of Combined Spectroscopic and Computational Study,” Journal of Molecular Structure. 1134 (2017): 814–27.
  • T. L. Bahers, T. Pauporte, P. P. Laine, F. Labat, C. Adamo, and I. Ciofini, “Modeling Dye-Sensitized Solar Cells: From Theory to Experiment,” J Phys Chem Lett 4, no. 6 (2013): 1044–50.
  • Umer Mehmood, Ibnelwaleed A. Hussein, Khalil Harrabi, and Belum V. S. Reddy, “Density Functional Theory Study on Dye-Sensitized Solar Cells Using Oxadiazole-Based Dyes,” Journal of Photonics for Energy 5, no. 1 (2015): 053097.
  • Y. S. Mary, Y. S. Mary, R. Thomas, B. Narayana, S. Samshuddin, B. K. Sarojini, S. Armakovic, S. J. Armakovic, and G. G. Pillai, “Theoretical Studies on the Structure and Various Physico-Chemical and Biological Properties of a Terphenyl Derivative with Immense anti-Protozoan Activity,” Polycyclic Aromatic Compounds 41, no. 4 (2021): 825–40.
  • P. Shafieyoon, E. Mehdipour, and Y. S. Mary, “Synthesis, Characterization and Biological Investigation of Glycine Based Sulfonamide Derivative and Its Complex: Vibration Assignment, HOMO-LUMO Analysis, MEP and Molecular Docking,” Journal of Molecular Structure. 1181 (2019): 244–52.
  • S. Beegum, Y. S. Mary, C. Y. Panicker, S. Armakovic, S. J. Armakovic, M. Arisoy, O. Temiz-Arpaci, and C. Van Alsenoy, “Spectroscopic, Antimicrobial and Computational Study of Novel Benzoxazole Derivative,” Journal of Molecular Structure. 1176 (2019): 881–94.
  • A. H. Almuqrin, J. S. Al-Otaibi, Y. S. Mary, Y. S. Mary, and R. Thomas, “Structural Study of Letrozole and Metronidazole and Formation of Self-Assembly with Graphene and Fullerene with the Enhancement of Physical, Chemical and Biological Activities,” Journal of Biomolecular Structure & Dynamics 39, no. 15 (2021): 5509–15.
  • Y. S. Mary, C. Y. Panicker, M. Sapnakumari, B. Narayana, B. K. Sarojini, A. A. Al-Saadi, C. Van Alsenoy, J. A. War, and H. K. Fun, “Molecular Structure, FT-IR, Vibrational Assignments, HOMO-LUMO Analysis and Molecular Docking Study of 1-[5-(4-Bromophenyl)-3-(4-Fluorophenyl)-4,5-Dihydro-1H-Pyrazol-1-yl],” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 136 (2015): 473–82.
  • Bhaskaran Sureshkumar, Yohannan Sheena Mary, Chacko Yohannan Panicker, Somasekharan Suma, Stevan Armaković, Sanja J. Armaković, Christian Van Alsenoy, and Badiadka Narayana, “Quinoline Derivatives as Possible Lead Compounds for anti-Malarial Drugs: Spectroscopic, DFT and MD Study,” Arabian Journal of Chemistry 13, no. 1 (2020): 632–48.
  • E. D. Glendening, A. E. Reed, J. E. Carpenter, and F. Weinhold, 1998. NBO Version 3.1, TCI, University of Wisconsin. Madison.
  • M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman Spectra of Pyridine Adsorbed at a Silver Electrode,” Chemical Physics Letters. 26, no. 2 (1974): 163–6.
  • M. G. Albrecht, and J. A. Creighton, “Anomalously Intense Raman Spectra of Pyridine at a Silver Electrode,” Journal of the American Chemical Society 99, no. 15 (1977): 5215–7.
  • J. S. Al-Otaibi, A. H. Almuqrin, Y. S. Mary, and Y. S. Mary, “Comprehensive Quantum Mechanical Studies on Three Bioactive Anastrozole Based Traizole Analgoues and Their SERS Active Graphene Complex,” Journal of Molecular Structure. 1217 (2020): 128388.
  • J. S. Al-Otaibi, A. H. Almuqrin, Y. S. Mary, and Y. S. Mary, “Utilization of O/S-Doped Graphene Nanoclusters for Ultrasensitive Detection of Flurane derivatives-DFT Investigations,” Journal of Biomolecular Structure and Dynamics (2021): 1–8.
  • L. V. Velazquez-Lopez, S. M. Pacheco-Ortin, R. Mejia-Olvera, and E. Agacino-Valdes, “DFT Study of CO Adsorption on Nitrogen/Boorn Doped-Graphene for Sensor Applications,” Journal of Molecular Modeling. 25 (2019): 91.
  • V. Sharma, N. N. Som, S. B. Pillai, and P. K. Jha, “Utilization of Doped GQDs for Ultrasensitive Detection of Catastrophic Melamine: A New SERS Platform,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 224 (2020): 117352.
  • Y. S. Mary, Y. S. Mary, and Z. Ullah, “Computational Study of Sorbic Acid Drug Adsorption onto Coronene/Fullerene/Fullerene-like X12Y12 (X = Al, B and Y = N,P) Nanocages: DFT and Molecular Docking Investigations,” Journal of Cluster Science. (2021). doi:10.1007/s10876-021-02106-4
  • J. S. Al-Otaibi, Y. S. Mary, Y. S. Mary, R. Trivedi, and B. Chakraborty, “Theoretical Investigation on the Adsorption of Melamine in Al12/B12-N12/P12 Fullerene-like Nanocages: A Platform for Ultrasensitive Detection of Melamine,” Chemical Papers 76, no. 1 (2022): 225–38.
  • A. H. Almuqrin, J. S. Al-Otaibi, Y. S. Mary, and Y. S. Mary, “DFT Computational Study towards Investigating Psychotropic Drugs, Promazine and Trifluoperazine Adsorption on Graphene, Fullerene and Carbon Cyclic Ring nanoclusters,” Spectrochim Acta A Mol Biomol Spectrosc 246 (2021): 119012.
  • Jamelah S. Al-Otaibi, “Detailed Quantum Mechanical Studies on Bioactive Benzodiazepine Derivatives and Their Adsorption over Graphene Sheets,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 235, no. 118333 (2020): 118333.
  • Zakir Ullah, Prasad M. Sonawane, Y. Sheena Mary, Y. Shyma Mary, Pratap Mane, Brahmananda Chakraborty, and David G. Churchill, “Theoretical Model Study of Adosrbed Antimalarial-Graphene Dimers: doping Effects, Photophysical Parameters, Intermolecular Interactions, Edge Adsorption, and SERS,” Journal of Biomolecular Structure and Dynamics. (2021): 1–12.
  • Y. S. Mary, and Y. S. Mary, “Adsorption of Phenothiazine Derivative on Graphene – DFT, Docking and MD Simulation,” Polycyclic Aromatic Compounds (2021): 1–12.
  • Veena S. Kumar, Y. Sheena Mary, Kiran Pradhan, Dhiraj Brahman, Y. Shyma Mary, Goncagül Serdaroğlu, Ali Shokuhi Rad, and M. S. Roxy, “Conformational Analysis and Quantum Descriptors of Two New Imidazole Derivatives by Experimental, DFT, AIM, Molecular Docking Studies and Adsorption Activity on Graphene,” Heliyon 6, no. 10 (2020): e05182.
  • Veena S. Kumar, Y. Sheena Mary, Y. Shyma Mary, Goncagül Serdaroğlu, Ali Shokuhi Rad, M. S. Roxy, P. S. Manjula, and B. K. Sarojini, “Conformational Analysis and DFT Investigations of Two Triazole Derivatives and Its Halogenated Substitution by Using Spectroscopy, AIM and Molecular Docking,” Chemical Data Collections 31 (2021): 100625.
  • Y. S. Mary, Y. S. Mary, K. S. Resmi, and A. S. Rad, “Spectroscopic and Computational Study of Chromone Derivatives with Antitumor Activity: detailed DFT, QTAIM and Docking Investigations,” SN Applied Sciences 3, no. 2 (2021): 143.
  • Y. S. Mary, Y. S. Mary, A. S. Rad, R. Yadav, I. Celik, and S. Sarala, “Theoretical Investigation on the Reactive and Interaction Properties of sorafenib-DFT, AIM, Spectroscopic and Hirshfeld Analysis, Docking and Dynamics Simulation,” Journal of Molecular Liquids 330 (2021): 115652.
  • A. Lagunin, A. Stepanchikova, D. Filimonov, and V. Poroikov, “PASS: prediction of Activity Spectra for Biologically Active Substances,” Bioinformatics (Oxford, England) 16, no. 8 (2000): 747–8.
  • D. W. Heinz, M. Ryan, M. P. Smith, L. H. Weaver, J. F. W. Keana, and O. H. Griffith, “Crystal Structure of Phosphatidylinositorl-Specific Phospholipase C from bacillus cereus in Complex with Glucosaminyl(α1→6)-D-Myo-Inositol, an Essential Frament of GPI Anchors,” Biochemistry 35, no. 29 (1996): 9496–504.
  • P. R. Porubsky, K. M. Meneely, and E. E. Scott, “Structures of Human Cytochrome P-450 2E1, Insights into the Binding of Inhibitors and Both Small Molecular Weight and Fatty Acid Substrates,” The Journal of Biological Chemistry 283, no. 48 (2008): 33698–707.
  • Z. Zhou, J. Zhen, N. K. Karpowich, R. M. Goetz, C. J. Law, M. E. A. Reith, and D. Neng, “LeuT-Desipramine Structure Reveals How Antidepressants Block Neurotransmitter Reuptake,” Science (New York, N.Y.) 317, no. 5843 (2007): 1390–3.
  • V. Stojanoski, C. J. Adamski, L. Hu, S. C. Mehta, B. Sankaran, P. Zwart, B. V. V. Prasad, and T. Palzkill, “Removal of the Side Chain at the Active-Site Serine by a Glycine Substitution Increases the Stability of a Wide Range of Serine β-Lactamases by Relieving Steric Strain,” Biochemistry 55, no. 17 (2016): 2479–90.
  • A. Wang, C. D. Stout, Q. Zhang, and E. F. Johnson, “Contributions of Ionic Interactions and Protein Dynamics to Cytochrome P450 2D6 (CYP2D6) Substrate and Inhibitor Binding,” The Journal of Biological Chemistry 290, no. 8 (2015): 5092–104.
  • M. H. Hsu, and E. F. Johnson, “Active-Site Differences between Substrate-Free and Tironavir-Bound Cytochrome P450 (CYP) 3A5 Reveal Plasticity Differences between CYP3A5 and CYP3A4,” The Journal of Biological Chemistry 294, no. 20 (2019): 8015–22.
  • G. Branden, T. Sjogren, V. Schnecke, and Y. Xue, “Structure-Based Ligand Design to Overcome CYP Inhibition in Drug Discovery Projects,” Drug Discovery Today 19, no. 7 (2014): 905–11.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.