600
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis and anti-Cancer Activity of a New Hybrid Based Spirooxindole-Pyrrolidine -Thiochromene Scaffolds via [3 + 2] Cycloaddition Reaction: Computational Investigation

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 2302-2320 | Received 30 Nov 2021, Accepted 09 Feb 2022, Published online: 27 Feb 2022

References

  • T. L. Pavlovska, R. G. Redkin, V. V. Lipson, and D. V. Atamanuk, “Molecular Diversity of Spirooxindoles. Synthesis and Biological Activity,” Molecular Diversity 20, no. 1 (2016): 299–344.
  • X. Zhang, M. Liu, D. Zhan, M. Kaur, J. P. Jasinski, and W. Zhang, “Three-Component [3 + 2] Cycloaddition for Regio-and Diastereoselective Synthesis of Spirooxindole-Pyrrolidines,” New Journal of Chemistry 46 (2022): 3866–3870.
  • S. Haddad, S. Boudriga, F. Porzio, A. Soldera, M. Askri, D. Sriram, P. Yogeeswari, M. Knorr, Y. Rousselin, and M. M. Kubicki, “Synthesis of Novel Dispiropyrrolothiazoles by Three-Component 1,3-Dipolar Cycloaddition and Evaluation of Their Antimycobacterial Activity,” RSC Advances. 4, no. 103 (2014): 59462–71.
  • S. Haddad, S. Boudriga, T. N. Akhaja, J. P. Raval, F. Porzio, A. Soldera, M. Askri, M. Knorr, Y. Rousselin, M. M. Kubicki, et al, “A Strategic Approach to the Synthesis of Functionalized Spirooxindole Pyrrolidine Derivatives: In Vitro Antibacterial, Antifungal, Antimalarial and Antitubercular Studies,” New Journal of Chemistry 39, no. 1 (2015): 520–8.
  • E. G. Prado, M. G. Gimenez, R. De la Puerta Vázquez, J. E. Sánchez, and M. S. Rodríguez, “Antiproliferative Effects of Mitraphylline, a Pentacyclic Oxindole Alkaloid of Uncaria Tomentosa on Human Glioma and Neuroblastoma Cell Lines,” Phytomedicine: international Journal of Phytotherapy and Phytopharmacology 14, no. 4 (2007): 280–4.
  • K. Li, Z. Zhang, J. Zhu, Y. Wang, J. Zhao, E. Q. Li, and Z. Duan, “Diastereodivergent Synthesis of Fully Disubstituted Spiro [Indoline-3, 2′-Pyrrolidin]-2-Ones via Tuneable Lewis Base/Brønsted Base-Promoted (3 + 2) Cycloadditions,” Organic Chemistry Frontiers 9, no. 1 (2022): 19–24.
  • Y. Arun, K. Saranraj, C. Balachandran, and P. T. Perumal, “Novel Spirooxindole- Pyrrolidine Compounds: Synthesis, Anticancer and Molecular Docking Studies,” European Journal of Medicinal Chemistry 74 (2014): 50–64.
  • A. I. Almansour, R. S. Kumar, N. Arumugam, A. Basiri, Y. Kia, M. A. Ali, M. Farooq, and V. Murugaiyah, “A Facile Ionic Liquid Promoted Synthesis, Cholinesterase Inhibitory Activity and Molecular Modeling Study of Novel Highly Functionalized Spiropyrrolidines,” Molecules (Basel, Switzerland) 20, no. 2 (2015): 2296–309.
  • Y. Wang, A. A. Cobo, and A. Franz, “Recent Advances in Organocatalytic Asymmetric Multicomponent Cascade Reactions for Enantioselective Synthesis of Spirooxindoles,” Organic Chemistry Frontiers 8, no. 15 (2021): 4315–48.
  • P. V. Saranya, M. Neetha, T. Aneeja, and G. Anilkumar, “Transition Metal-Catalyzed Synthesis of Spirooxindoles,” RSC Advances 11, no. 13 (2021): 7146–79.
  • C. V. Galliford, and K. A. Scheidt, “Pyrrolidinyl‐Spirooxindole Natural Products as Inspirations for the Development of Potential Therapeutic Agents,” Angewandte Chemie (International ed. in English) 46, no. 46 (2007): 8748–58. 2007
  • S. Nasri, M. Bayat, and F. Mirzaei, “Recent Strategies in the Synthesis of Spiroindole and Spirooxindole Scaffolds,” Topics in Current Chemistry 379, no. 4 (2021): 1–37.
  • J. L. Tucker, “Green Chemistry, a Pharmaceutical Perspective,” Organic Process Research & Development 10, no. 2 (2006): 315–9.
  • Sanjeev Shangary, Dongguang Qin, Donna McEachern, Meilan Liu, Rebecca S. Miller, Su Qiu, Zaneta Nikolovska-Coleska, Ke Ding, Guoping Wang, Jianyong Chen, et al, “Temporal Activation of p53 by a Specific MDM2 Inhibitor is Selectively Toxic to Tumors and Leads to Complete Tumor Growth Inhibition,” Proceedings of the National Academy of Sciences of the United States of America 105, no. 10 (2008): 3933–8., 2008
  • L. R. Domingo, “Molecular Electron Density Theory: A Modern View of Reactivity in Organic Chemistry,” Molecules 21, no. 10 (2016): 1319.
  • M. Ríos-Gutiérrez, and L. R. Domingo, “Unravelling the Mysteries of the [3 + 2] Cycloaddition Reactions,” European Journal of Organic Chemistry 2019, no. 2-3 (2019): 267–82.
  • L. R. Domingo, E. Chamorro, and P. Pérez, “Understanding the High Reactivity of the Azomethine Ylides in [3 + 2] Cycloaddition Reactions,” Letters in Organic Chemistry 7, no. 6 (2010): 432–9.
  • L. R. Domingo, K. Kula, and M. Ríos-Gutiérrez, “Unveiling the Reactivity of Cyclic Azomethine Ylides in [3 + 2] Cycloaddition Reactions within the Molecular Electron Density Theory,” European Journal of Organic Chemistry 2020, no. 37 (2020): 5938–48.
  • N. H. de Silva, S. Pyreddy, E. W. Blanch, H. M. Hügel, and S. Maniam, “Microwave-Assisted Rapid Synthesis of Spirooxindole-Pyrrolizidine Analogues and Their Activity as anti-Amyloidogenic Agents,” Bioorganic Chemistry 114 (2021): 105128.
  • N. Nivetha, and A. Thangamani, “Dispirooxindole-Pyrrolothiazoles: Synthesis, anti-Cancer Activity, Molecular Docking and Green Chemistry Metrics Evaluation,” Journal of Molecular Structure 1242 (2021): 130716.
  • M. Sathish, A. P. Sakla, F. M. Nachtigall, L. S. Santos, and N. Shankaraiah, “TCCA-Mediated Oxidative Rearrangement of Tetrahydro-β-Carbolines: facile Access to Spirooxindoles and the Total Synthesis of (±)-Coerulescine and (±)-Horsfiline,” RSC Advances 11, no. 27 (2021): 16537–46.
  • M. G. Kulkarni, A. P. Dhondge, S. W. Chavhan, A. S. Borhade, Y. B. Shaikh, D. R. Birhade, M. P. Desai, and N. R. Dhatrak, “Total Synthesis of (±)-Coerulescine and (±)-Horsfiline,” Beilstein Journal of Organic Chemistry 6 (2010): 876–9.
  • Vojtěch Dočekal, Andrea Vopálenská, Pavel Měrka, Klára Konečná, Ondřej Jand'ourek, Milan Pour, Ivana Císařová, and Jan Veselý, “Enantioselective Construction of Spirooxindole-Fused Cyclopentanes,” The Journal of Organic Chemistry 86, no. 18 (2021): 12623–43.
  • Z. C. Huang, M. Xiang, W. S. Li, Y. Zou, C. Y. Li, J. Zhang, X. Li, F. Tian, and L. X. Wang, “Novel Preparation of Chiral 3, 2′-Pyrrolidinyl Spirooxindole from an Enantioselective Michael Addition between 3-(Diphenylmethylene)-Amino-Oxindole and Acrolein Catalyzed by a Cinchona Alkaloid,” Tetrahedron Letters 88 (2022): 153565.
  • Y. Deng, Y. Li, Y. Wang, S. Sun, S. Ma, P. Jia, W. Li, K. Wang, and W. Yan, “Efficient Enantioselective Synthesis of CF 2 H-Containing Dispiro [Benzo [b] Thiophene-Oxindole-Pyrrolidine] s via Organocatalytic Cycloaddition,” Organic Chemistry Frontiers 9, no. 1 (2022): 210–5.
  • R. Saeed, A. P. Sakla, and N. Shankaraiah, “An Update on the Progress of Cycloaddition Reactions of 3-Methyleneindolinones in the past Decade: versatile Approaches to Spirooxindoles,” Organic & Biomolecular Chemistry 19, no. 36 (2021): 7768–91.
  • T. Li, X. Zhu, H. Jiang, Y. Wang, N. Zheng, T. Peng, R. Gao, L. Shi, X. Q. Hao, and M. P. Song, “Pd‐Catalyzed Decarboxylative [3 + 2] Cycloaddition: Assembly of Highly Functionalized Spirooxindoles Bearing Two Quaternary Centers,” Applied Organometallic Chemistry 36, no. 2 (2022): e6516.
  • Y. M. A. Aziz, G. Lotfy, M. M. Said, E. S. H. El Ashry, E. S. H. El Tamany, S. Soliman, M. M. Abu-Serie, M. Teleb, S. Yousuf, A. Dömling, et al, “ Design, Synthesis, Chemical and Biochemical Insights Into Novel Hybrid Spirooxindole-Based p53-MDM2 Inhibitors With Potential Bcl2 Signaling Attenuation,” Frontiers in Chemistry 9 (2021): 735236.
  • G. Lotfy, Y. M. A. Aziz, M. M. Said, E. S. H. El Ashry, E. S. H. El Tamany, M. M. Abu-Serie, M. Teleb, A. Dömling, and A. Barakat, “Molecular Hybridization Design and Synthesis of Novel Spirooxindole-Based MDM2 Inhibitors Endowed with BCL2 Signaling Attenuation; a Step towards the Next Generation p53 Activators,” Bioorganic Chemistry 117 (2021): 105427.
  • A. Barakat, M. S. Islam, M. Ali, A. M. Al-Majid, S. Alshahrani, A. S. Alamary, S. Yousuf, and M. I. Choudhary, “Regio- and Stereoselective Synthesis of a New Series of Spirooxindole Pyrrolidine Grafted Thiochromene Scaffolds as Potential Anticancer Agents,” Symmetry 13, no. 8 (2021): 1426.
  • R. G. Parr, and W. Yang, Density-Functional Theory of Atoms and Molecules; Oxford University Press: New York, NY, USA, 1989.
  • L. R. Domingo, M. Ríos-Gutiérrez, and P. Pérez, “Applications of the Conceptual Density Functional Indices to Organic Chemistry Reactivity,” Molecules 21, no. 6 (2016): 748.
  • R. G. Parr, L. V. Szentpaly, and S. Liu, “Electrophilicity Index,” Journal of the American Chemical Society 121, no. 9 (1999): 1922–4.
  • L. R. Domingo, E. Chamorro, and P. Pérez, “Understanding the Reactivity of Captodative Ethylenes in Polar Cycloaddition Reactions. A Theoretical Study,” The Journal of Organic Chemistry 73, no. 12 (2008): 4615–24.
  • L. R. Domingo, P. Pérez, and J. A. Sáez, “Understanding the Local Reactivity in Polar Organic Reactions through Electrophilic and Nucleophilic Parr Functions,” RSC Advances. 3, no. 5 (2013): 1486–94.
  • L. R. Domingo, “A New C-C Bond Formation Model Based on the Quantum Chemical Topology of Electron Density,” RSC Advances. 4, no. 61 (2014): 32415–28.
  • G. M. Sheldrick, SADABS - Bruker Nonius Scaling and Absorption Correction -, Bruker AXS, Inc.: Madison, Wisconsin, USA, 2012.
  • G. M. Sheldrick, “SHELXT–Integrated Space-Group and Crystal-Structure Determination,” Acta Cryst A71 (2015): 3–8.
  • G. M. Sheldrick, “Crystal Structure Refinement with SHELXL,” Acta Cryst C71 (2015): 3–8.
  • C. B. Hübschle, G. M. Sheldrick, and B. Dittrich, “ShelXle: A Qt Graphical User Interface for SHELXL,” Journal of Applied Crystallography 44, no. 6 (2011): 1281–4.
  • M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, P. R. Spackman, D. Jayatilaka, and M. A. Spackman, Crystal Explorer17, 2017. University of Western Australia. http://hirshfeldsurface.net
  • Y. Sert, M. Gümüş, H. Gökce, İ. Kani, and İ. Koca, “Molecular Docking, Hirshfeld Surface, Structural, Spectroscopic, Electronic, NLO and Thermodynamic Analyses on Novel Hybrid Compounds Containing Pyrazole and Coumarin Cores,” Journal of Molecular Structure 1171 (2018): 850–66.
  • Can Alaşalvar, Nuri Öztürk, Alaa A.-M. Abdel-Aziz, Halil Gökce, Adel S. El-Azab, Manal A. El-Gendy, and Yusuf Sert, “Molecular Structure, Hirshfeld Surface Analysis, Spectroscopic (FT-IR, Laser-Raman, UV Vis. and NMR), HOMO-LUMO and NBO Investigations on N-(12-Amino-9,10-Dihydro-9,10-Ethanoanthracen-11-yl)-4 Methyl Benzenesulfonamide,” Journal of Molecular Structure 1171 (2018): 696–705.
  • M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, and G. A. Petersson, Gaussian 09; Revision A02; Gaussian Inc.: Wallingford, CT, USA, 2009. ; GaussView; Version 4.1; Dennington II, R., Keith, T., Millam, J., Eds.; Semichem Inc.: Shawnee Mission, KS, USA, 2007.
  • A. E. Reed, L. A. Curtiss, and F. Weinhold, “Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint,” Chemical Reviews 88, no. 6 (1988): 899–926. ‏
  • B. Marten, K. Kim, C. Cortis, R. A. Friesner, R. B. Murphy, M. N. Ringnalda, D. Sitkoff, and B. Honig, “New Model for Calculation of Solvation Free Energies: Correction of Self-Consistent Reaction Field Continuum Dielectric Theory for Short-Range Hydrogen-Bonding Effects,” The Journal of Physical Chemistry 100, no. 28 (1996): 11775–65.
  • D. J. Tannor, B. Marten, R. Murphy, R. A. Friesner, D. Sitkoff, A. Nicholls, M. Ringnalda, W. A. Goddard, and B. Honig, “Accurate First Principles Calculation of Molecular Charge Distributions and Solvation Energies from ab Initio Quantum Mechanics and Continuum Dielectric Theory,” Journal of the American Chemical Society 116, no. 26 (1994): 11875–82.
  • J. R. Cheeseman, G. W. Trucks, T. A. Keith, and M. J. Frisch, “A Comparison of Models for Calculating Nuclear Magnetic Resonance Shielding Tensors,” Journal of Chemical Physics. 104, no. 14 (1996): 5497–509.
  • M. Mannerström, T. Toimela, J.-R. Sarkanen, and T. Heinonen, “Human BJ Fibroblasts is an Alternative to Mouse BALB/c 3T3 Cells in in Vitro Neutral Red Uptake Assay,” Basic & Clinical Pharmacology & Toxicology 121 (2017): 109–15.
  • P. Price, and T. J. McMillan, “Use of the Tetrazolium Assay in Measuring the Response of Human Tumor Cells to Ionizing Radiation,” Cancer Research 50, no. 5 (1990): 1392–6. Available online: https://cancerres.aacrjournals.org/content/canres/50/5/1392.full.pdf. (access on 1 June 2020).
  • D. A. Scudiero, R. H. Shoemaker, K. D. Paull, A. Monks, S. Tierney, T. H. Nofziger, M. J. Currens, D. Seniff, and M. R. Boyd, “Evaluation of a Soluble Tetrazolium/Formazan Assay for Cell Growth and Drug Sensitivity in Culture Using Human and Other Tumor Cell Lines,” Cancer Research 48, no. 17 (1988): 4827–33.
  • T. Mosmann, “Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays,” Journal of Immunological Methods 65, no. 1-2 (1983): 55–63.
  • Ş. Comşa, A. M. Cimpean, and M. Raica, “The Story of MCF-7 Breast Cancer Cell Line: 40 Years of Experience in Research,” Anticancer Research 35, no. 6 (2015): 3147–54.
  • L. Mielczarek, P. Krug, M. Mazur, M. Milczarek, Z. Chilmonczyk, and K. Wiktorska, “In the Triple-Negative Breast Cancer MDA-MB-231 Cell Line, Sulforaphane Enhances the Intracellular Accumulation and Anticancer Action of Doxorubicin Encapsulated in Liposomes,” International Journal of Pharmaceutics 558 (2019): 311–8.
  • D. Zhao, B. Sun, J. Ren, F. Li, S. Song, X. Lv, C. Hao, and M. Cheng, “Synthesis and Biological Evaluation of 3-Phenyl-3-Aryl Carboxamido Propanoic Acid Derivatives as Small Molecule Inhibitors of Retinoic Acid 4-Hydroxylase (CYP26A1),” Bioorganic & Medicinal Chemistry 23, no. 6 (2015): 1356–65.
  • W. O. Foye, T. L. Lemke, and D. A. Williams, Principles of Medicinal Chemistry, 4th; Williams, O., Wilkins, Eds. (Philadelphia, PA, USA: Williams & Wilkins, 2002), 822.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.