132
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Collaboration of Ultrasonic Irradiation and Silica Nanoparticles in the Diastereoselective Synthesis of Trans-2,3-Dihydrofuran Derivatives: An Exceptional Catalytic Activity of Sound Cavities and SiO2 Nanoparticles

ORCID Icon
Pages 2321-2334 | Received 30 Nov 2021, Accepted 09 Feb 2022, Published online: 26 Feb 2022

References

  • M. M. Vieira, B. T. Dalberto, F. L. Coelho, and P. H. Schneider, “Ultrasound-Promoted Regioselective Synthesis of Chalcogeno-Indolizines by a Stepwise 1,3-Dipolar Cycloaddition,” Ultrasonics Sonochemistry 68 (2020): 105228.
  • F. Z. Thari, E. Álvarez, H. Tachallait, N. El. Alaoui, A. Talha, S. Arshad, K. Karrouchi, and K. Bougrin, “ Ultrasound-assisted one-pot green synthesis of new N- substituted-5-arylidene-thiazolidine-2,4-dione-isoxazoline derivatives using NaCl/Oxone/Na3PO4 in aqueous media ,” Ultrason Sonochem 68 (2020): 105222.
  • A. Maleki, and M. Aghaie, “ Ultrasonic-assisted environmentally-friendly synergetic synthesis of nitroaromatic compounds in core/shell nanoreactor: A green protocol ,” Ultrason Sonochem 39 (2017): 534–9. http://dx.doi.org/10.1016/j.ultsonch.2017.05.031.
  • T. J. Mason, A. J. Cobley, J. E. Graves, and D. Morgan, “New Evidence for the Inverse Dependence of Mechanical and Chemical Effects on the Frequency of Ultrasound, Ultrason,” Ultrasonics Sonochemistry 18, no. 1 (2011): 226–30.
  • Y. F. Baba, Y. Sert, Y. K. Rodi, S. Hayani, J. T. Mague, D. Prim, J. Marrot, F. O. Chahdi, N. K. Sebbar, and E. M. Essassi, “Synthesis, Crystal Structure, Spectro-Scopic Characterization, Hirshfeld Surface Analysis, Molecular Docking Studiesand DFT Calculations, and Antioxidant Activity of 2-Oxo-1, 2-Dihydroquinoline-4-Carboxylate Derivatives,” Journal of Molecular Structure. 1188 (2019): 255–68.
  • Laura Piccagli, Monica Borgatti, Elena Nicolis, Nicoletta Bianchi, Irene Mancini, Ilaria Lampronti, Daniela Vevaldi, Francesco Dall'Acqua, Giulio Cabrini, and Roberto Gambari, “Virtual Screening against Nuclear Factor κB (NF-κB) of a Focus Library: Identification of Bioactive Furocoumarin Derivatives Inhibiting NF-κB Dependent Biological Functions Involved in Cystic Fibrosis,” Bioorganic & Medicinal Chemistry 18, no. 23 (2010): 8341–9.
  • C. P. Chuang, and K. P. Chen, “N-Phenacylpyridinium Bromides in the One-Pot Synthesis of 2,3-Dihydrofurans,” Tetrahedron 68, no. 5 (2012): 1401–6. https://doi.org/10.1016/j.tet.2011.12.035.
  • C. P. Chuang, K. P. Chen, Y. L. Hsu, A. I. Tsai, and S. T. Liu, “α-Nitro Carbonyl Compounds in the Synthesis of 2,3-Dihydrofurans,” Tetrahedron 64, no. 32 (2008): 7511–6.
  • A. T. Khan, M. Lal, and R. S. Basha, “Regio- and Diastereoselective Synthesis of Trans-2,3-Dihydrofuran Derivatives in an Aqueous Medium,” Synthesis 45, no. 03 (2013): 406–12. https://doi.org/10.1055/s-0032-1316837.
  • B. Vinosha, S. Perumal, S. Renuga, and A. I. Almansour, “A Facile Domino Protocol for the Stereoselective Synthesis of Trans-2,3-Dihydrobenzofurans and Cis-5,6-Dihydrofuro[2,3-d]Pyrimidines,” Tetrahedron Letters. 53, no. 8 (2012): 962–6.
  • J. Safaei-Ghomi, P. Babaei, H. Shahbazi-Alavi, and S. Zahedi, “Diastereoselective Synthesis of Trans-2, 3-Dihydrofuro[3,2-c]Coumarins by MgO Nanoparticles under Ultrasonic Irradiation,” Journal of Saudi Chemical Society 21, no. 8 (2017): 929–37.
  • Q.-F. Wang, H. Hou, L. Hui, and C.-G. Yan, “Diastereoselective Synthesis of Trans-2,3-Dihydrofurans with Pyridinium Ylide Assisted Tandem Reaction,” The Journal of Organic Chemistry 74, no. 19 (2009): 7403–6.
  • E. Altieri, M. Cordaro, G. Grassi, F. Risitano, and A. Scala, “Regio and Diastereoselective Synthesis of Functionalized 2,3-Dihydrofuro[3,2-c]-Coumarins via a One-Pot Three-Component Reaction,” Tetrahedron 66, no. 49 (2010): 9493–6. https://doi.org/10.1016/j.tet.2010.10.023.
  • J. Qian, W. Cao, H. Zhang, J. Chen, and S. Zhu, “A Novel and Facile Synthesis of 2,3-Dihydrofuran Derivatives Containing Trifluoromethyl Group,” Journal of Fluorine Chemistry 128, no. 3 (2007): 207–10.
  • Wessam Saaed, Mohamed Elagawany, Mohamed M. Azab, Alaa S. Amin, Nigam P. Rath, Lamees Hegazy, and Bahaa Elgendy, “Catalyst-and Organic Solvent-Free Synthesis, Structural, and Theoretical Studies of 1-Arylidenamino-2,4-Disubstituted-2-Imidazoline-5-Ones,” Results in Chemistry 2 (2020): 100042.
  • A. Khojastehnezhad, F. Moeinpour, and A. Javid, “NiFe2O3@SiO2–PPA Nanoparticle: A Green Nanocatalyst for the Synthesis of β-Acetamido Ketones,” Polycyclic Aromatic Compounds 39, no. 5 (2019): 404–12.
  • S. S. Atalay, M. Y. Assad, T. Amagata, and W. Wu, “Mild, Efficient, and Solvent-Free Synthesis of 4-Hydroxy-2-Quinolinones,” Tetrahedron Letters. 61, no. 16 (2020): 151778. 10.1016/j.tetlet.2020.151778.
  • S. Serrano-Luginbühl, K. Ruiz-Mirazo, R. Ostaszewski, F. Gallou, and P. Walde, “Soft and Dispersed Interface-Rich Aqueous Systems That Promote and Guide Chemical Reactions,” Nature Reviews Chemistry 2, no. 10 (2018): 306–27.
  • T. Kitanosono, and S. Kobayashi, “Reactions in Water Involving the "On-Water" Mechanism“”,” Chemistry (Weinheim an Der Bergstrasse, Germany) 26, no. 43 (2020): 9408–29.
  • S. Narayan, J. Muldoon, M. G. Finn, V. V. Fokin, H. C. Kolb, and K. B. Sharpless, “ "On water": unique reactivity of organic compounds in aqueous suspension”: ,” Angewandte Chemie (International ed. in English) 44, no. 21 (2005): 3275–9.
  • Y. Shi, X. Liu, Y. Han, P. Yan, F. Bie, and H. Cao, “General and Practical Intramolecular Decarbonylative Coupling of Thioesters via Palladium Catalysis,” RSC Advances 10, no. 2 (2020): 739–45.
  • N. Mase, Y. Nakai, N. Ohara, H. Yoda, K. Takabe, F. Tanaka, and C. F. Barbas, “Organocatalytic knoevenagel condensations by Means of Carbamic Acid Ammonium Salts,” Journal of the American Chemical Society 128, no. 3 (2006): 734–5.
  • L. Han, S.-J. Li, X.-T. Zhang, and S.-K. Tian, “Aromatic Aza-Claisen Rearrangement of Arylpropargylammonium Salts Generated in Situ from Arynes and Tertiary Propargylamines,” Chemistry (Weinheim an Der Bergstrasse, Germany) 27, no. 9 (2021): 3091–7.
  • R. Deilam, F. Moeinpour, and F. S. Mohseni‑Shahri, “Catalytic Performance of Cu(II)‑Supported Graphene Quantum Dots Modified NiFe2O4 as a Proficient Nano‑Catalyst in the Synthesis of 1,2,3‑Triazoles,” Monatshefte Für Chemie - Chemical Monthly 151, no. 7 (2020): 1153–62.
  • K. Khazenipour, F. Moeinpour, and F. S. Mohseni-Shahri, “Cu(II)-Supported Graphene Quantum Dots Modified NiFe2O4: A Green and Efficient Catalyst for the Synthesis of 4H-Pyrimido[2,1-b]Benzothiazoles in Water,” Journal of the Chinese Chemical Society 68, no. 1 (2021): 121–30.
  • S. Zhi, X. Ma, and W. Zhang, “Consecutive Multicomponent Reactions for the Synthesis of Complex Molecules,” Organic & Biomolecular Chemistry 17, no. 33 (2019): 7632–50.
  • K. Chakrabarti, M. Maji, and S. Kundu, “Cooperative Iridium Complex-Catalyzed Synthesis of Quinoxalines, Benzimidazoles and Quinazolines in Water,” Green Chemistry 21, no. 8 (2019): 1999–2004.
  • A. Mondal, M. K. Sahoo, M. Subaramanian, and E. Balaraman, “Manganese(I)-Catalyzed Sustainable Synthesis of Quinoxaline and Quinazoline Derivatives with the Liberation of Dihydrogen,” The Journal of Organic Chemistry 85, no. 11 (2020): 7181–91.
  • J. Wu, and C. Darcel, “Iron-Catalyzed Hydrogen Transfer Reduction of Nitroarenes with Alcohols: Synthesis of Imines and Aza Heterocycles,” The Journal of Organic Chemistry 86, no. 1 (2021): 1023–36.
  • P. Ghamari Kargar, G. Bagherzade, and H. Eshghi, “Introduction of a Trinuclear Manganese(Iii) Catalyst on the Surface of Magnetic Cellulose as an Eco-Benign, Efficient and Reusable Novel Heterogeneous Catalyst for the Multi-Component Synthesis of New Derivatives of Xanthene,” RSC Advances 11, no. 8 (2021): 4339–55.
  • S. Rostamizadeh, Z. Daneshfar, and A. Khazaei, “Ferric Sulfasalazine Sulfa Drug Complex Supported on Cobalt Ferrite Cellulose; Evaluation of Its Activity in MCRs,” Catalysis Letters 150, no. 7 (2020): 2091–114. https://doi.org/10.1007/s10562-020-03101-6.
  • H. Mohammadi, and H. R. Shaterian, “Sulfonated Magnetic Nanocatalyst and Application for Synthesis of Novel Spiro[Acridine-9,5′-Thiazole]-1,4′-Dione Derivatives,” Research on Chemical Intermediates 46, no. 2 (2020): 1109–25. https://doi.org/10.1007/s11164-019-04022-9.
  • C. W. Luo, and A. Li, “Synthesis of 3-Picoline from Acrolein Dimethyl Acetal and Ammonia over NH4F-HF Treated ZSM-5,” Reaction Kinetics, Mechanisms and Catalysis 125, no. 1 (2018): 365–80.
  • A. Kohzadian, and A. Zare, “Effective and Rapid Synthesis of Pyrido[2,3-d:6,5-d′]Dipyrimidines Catalyzed by a Mesoporous Recoverable Silica-Based Nanomaterial,” Silicon 12, no. 6 (2020): 1407–15.
  • Leila Z. Fekri, “ NiFe2O4@SiO2 @amino Glucose Magnetic Nanoparticle under Solvent-free Condition: A New, mild, Simple and Effective Avenue for the Synthesis of Quinazolinone, Imidazo[1,2-a]Pyrimidinone and Novel Derivatives of Amides,” Current Organic Synthesis 17, no. 4 (2020): 304–12. https://doi.org/10.2174/1570179417666200409151330.
  • P. Singh, P. Yadav, A. Mishra, and S. K. Awasthi, “Green and Mechanochemical One-Pot Multicomponent Synthesis of Bioactive 2-Amino-4H-Benzo[b]Pyrans via Highly Efficient Amine-Functionalized SiO2@Fe3O4 Nanoparticles,” ACS Omega. 5, no. 8 (2020): 4223–32.
  • S. Park, J. Jeong, K. Fujita, A. Yamamoto, and H. Yoshida, “Anti-Markovnikov Hydroamination of Alkenes with Aqueous Ammonia by Metal-Loaded Titanium Oxide Photocatalyst,” Journal of the American Chemical Society 142, no. 29 (2020): 12708–14. https://doi.org/10.1021/jacs.0c04598.
  • S. Banerjee, and S. Santra, “Remarkable Catalytic Activity of Silica Nanoparticle in the bis-Michael Addition of Active Methylene Compounds to Conjugated Alkenes,” Tetrahedron Letters. 50, no. 18 (2009): 2037–40.
  • SVHS. Bhaskaruni, S. Maddil, K. Kumar Gangu, and S. Jonnalagadda, “A Review on Multi-Component Green Synthesis of N-Containing Heterocycles Using Mixed Oxides as Heterogeneous Catalysts,” Arabian Journal of Chemistry 13, no. 1 (2020): 1142–78.
  • Saeed Rayati, Elham Khodaei, Parinaz Nafarieh, Majid Jafarian, Bahareh Elmi, and Andrzej Wojtczak, “A Manganese(III) Schiff Base Complex Immobilized on Silica-Coated Magnetic Nanoparticles Showing Enhanced Electrochemical Catalytic Performance toward Sulfide and Alkene Oxidation,” RSC Advances 10, no. 29 (2020): 17026–36.
  • J. Safari, S. H. Banitaba, and Sh Dehghan Khalili, “Ultrasound-Promoted an Efficient Method for One-Pot Synthesis of 2-Amino-4,6-Diphenylnicotinonitriles in Water: A Rapid Procedure without Catalyst,” Ultrasonics Sonochemistry 19, no. 5 (2012): 1061–9.
  • S. H. Banitaba, J. Safari, and Sh Dehghan Khalili, “Ultrasound Promoted one-pot synthesis of 2-amino-4,8-dihydropyrano[3,2-b]pyran-3-carbonitrile scaffolds in aqueous media: a complementary 'green chemistry' tool to organic synthesis ,” Ultrasonics Sonochemistry 20, no. 1 (2013): 401–7.
  • W. Stöber, A. Fink, and E. Bohn, “Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range,” Journal of Colloid and Interface Science. 26, no. 1 (1968): 62–9.
  • S. H. Banitaba, “A Mild Protocol for the Preparation of 2-Amino-Dihydropyrano[3,2-b] Pyran-3-Carbonitriles via Cobalt Nanoparticles-Catalysed Multi-Component Reaction in Water,” I. C. C 7, no. 23 (2019): 99–111.
  • Javad Safari, Sayed Hossein Banitaba, and Shiva D. Khalili, “Cellulose Sulfuric Acid Catalyzed Multicomponent Reaction for Efficient Synthesis of 1,4-Dihydropyridines via Unsymmetrical Hantzsch Reaction in Aqueous Media,” Journal of Molecular Catalysis A: Chemical. 335, no. 1-2 (2011): 46–50.
  • Mehdi Fallah-Mehrjardi, Mahdieh Shirzadi, and Sayed Hossein Banitaba, “A New Basic Ionic Liquid Supported on Magnetite Nanoparticles: An Efficient Phase-Transfer Catalyst for the Green Synthesis of 2-Amino-3-Cyano-4H-Pyrans,” Polycyclic Aromatic Compounds 4 (2020): 1–86.
  • M. Ebrahimi. Bidhandi, A. Riasi, and M. Ashjaee, “The Influence of SiO2 Nanoparticles on Cavitation Initiation and Intensity in a Centrifugal Water Pump,” Experimental Thermal and Fluid Science. 55 (2014): 71–6.
  • B. Banerjee, “Recent Developments on Ultrasound-Assisted One-Pot Multicomponent Synthesis of Biologically Relevant Heterocycles,” Ultrasonics Sonochemistry 35, no. Pt A (2017): 15–35.
  • C. G. Joseph, G. L. Puma, A. Bono, and D. Krishnaiah, “Sonophotocatalysis in Advanced Oxidation Process: A Short Review,” Ultrasonics Sonochemistry 16, no. 5 (2009): 583–9.
  • S. K. Gujar, and P. R. Gogate, “Application of Hybrid Oxidative Processes Based on Cavitation for the Treatment of Commercial Dye Industry Effluents,” Ultrasonics Sonochemistry 75 (2021): 105586.
  • J. Raso, P. Mañas, R. Pagán, and F. J. Sala, “Influence of Different Factors on the Output Power Transferred into Medium by Ultrasound,” Ultrasonics Sonochemistry 5, no. 4 (1999): 157–62.
  • M. R. Demodov, V. A. Osyanin, D. V. Osipov, U. N. Klimochkin, “Three-Component Condensation of Pyridinium Ylides, β-Ketonitriles, and Aldehydes with Divergent Regioselectivity: Synthesis of 4,5-Dihydrofuran-3- and 2H-Pyran-5-carbonitriles,” Journal of Organic Chemistry. 86(2021):7460–76.
  • J. Qian, W. Cao, H. Zhang, J. Chen, X. Zhou, M. Shao, and M. C. McMills, “Stereoselective Synthesis of Highly Substituted Trans-2,3-Dihydrofuran and Trans-1,2-Cyclopropane Derivatives Containing Sulfonyl Groups,” Tetrahedron 64, no. 1 (2008): 163–7.
  • Y. Ye, L. Wang, and R. Fan, “Aqueous Iodine(III)-Mediated Stereoselective Oxidative Cyclization for the Synthesis of Functionalized Fused Dihydrofuran Derivatives,” J Org Chem 75, no. 5 (2010): 1760–3.
  • S. Banerjee, and G. Sereda, “One-Step, Three-Component Synthesis of Highly Substituted Pyridines Using Silica Nanoparticle as Reusable Catalyst,” Tetrahedron Letters. 50, no. 50 (2009): 6959–62. https://doi.org/10.1016/j.tetlet.2009.09.137.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.