132
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis, Characterization and Antifungal Evaluation of Novel Pyridazin-3(2H)-One Derivatives

, , & ORCID Icon
Pages 2356-2375 | Received 28 May 2021, Accepted 14 Feb 2022, Published online: 27 Feb 2022

References

  • G. N. Agrios, Plant Pathology, 5th ed. (Cambridge, MA: Elsevier Academic Press, 2005).
  • J. Li, B. Cornelissen, and M. Rep, “Host-Specificity Factors in Plant Pathogenic Fungi,” Fungal Genetics and Biology 144 (2020): 103447..
  • G. Doehlemann, B. Ökmen, W. Zhu, and A. Sharon, “Plant Pathogenic Fungi,” Microbiology Spectrum 5, no. 1 (2017): 703–26.
  • A. B. Tleuova, E. Wielogorska, V. S. S. L. P. Talluri, F. Štěpánek, C. T. Elliott, and D. O. Grigoriev, “Recent Advances and Remaining Barriers to Producing Novel Formulations of Fungicides for Safe and Sustainable agriculture,” Journal of Controlled Release 326 (2020): 468–81..
  • G. Steinberg, and S. J. Gurr, “Fungi, Fungicide Discovery and Global Food Security,” Fungal Genetics and Biology 144 (2020): 103476..
  • Z. Yan, A. Liu, Y. Ou, J. Li, H. Yi, N. Zhang, M. Liu, L. Huang, J. Ren, W. Liu, et al, “Design, Synthesis and Fungicidal Activity Evaluation of Novel Pyrimidinamine Derivatives Containing phenyl-thiazole/oxazole moiety,” Bioorganic & Medicinal Chemistry 27, no. 15 (2019): 3218–28..
  • J. A. Lucas, N. J. Hawkins, and B. A. Fraaije, “The Evolution of Fungicide Resistance,” Advances in Applied Microbiology 90 (2015): 29–92..
  • I. I. Mangalagiu, “Recent Achievements in the Chemistry of 1,2-Diazines,” Current Organic Chemistry 15, no. 5 (2011): 730–52.
  • W. Akhtar, M. Shaquiquzzaman, M. Akhter, G. Verma, M. F. Khan, and M. M. Alam, “The Therapeutic Journey of Pyridazinone,” European Journal of Medicinal Chemistry 123 (2016): 256–81. http://dx.doi.org/10.1016/j.ejmech.2016.07.061.
  • M. Asif, “Various Chemical and Biological Activities of Pyridazinone Derivatives,” Central European Journal of Experimental Biology 5, no. 1 (2017): 1–19.
  • (a) C. Morillo, T. Undabeytia, A. Cabrera, J. Villaverde, and C. Maqueda, “Effect of Soil Type on Adsorption − Desorption, Mobility, and Activity of the Herbicide Norflurazon,” Journal of Agricultural and Food Chemistry 52, no. 4 (2004): 884–90.
  • (b) Y. Boukharsa, Y. Zaoui, J. Taoufik, and M. Ansar, “Pyridazin-3(2H)-Ones: Synthesis, Reactivity, Applications in Pharmacology and Agriculture,” ChemInform 46, no. 24 (2015): no–310.
  • J. Villaverde, J. I. Pérez-Martı’Nez, C. Maqueda, J. M. Ginés, and E. Morillo, “Inclusion Complexes of Alpha- and Gamma-cyclodextrins and the Herbicide Norflurazon: I. Preparation and Characterisation. II. Enhanced Solubilisation and Removal from Soils,” Chemosphere 60, no. 5 (2005): 656–64.
  • M. Asif, “Herbicidal and Molluscicidal Activities of Pyridazinone Compounds,” Mini-Reviews in Organic Chemistry 10, no. 2 (2013): 113–22.
  • C. Lamberth, “Pyridazine Chemistry in Crop Protection,” Journal of Heterocyclic Chemistry 54, no. 6 (2017): 2974–1381.
  • (a) S. Varughese, and S. M. Draper, “Pyridazines in Crystal Engineering. A Systematic Evaluation of the Role of Isomerism and Steric Factors in Determining Crystal Packing and Nano/Microcrystal Morphologies,” Crystal Growth & Design 10, no. 6 (2010): 2571–80.
  • (b) T. Mitsumori, M. Bendikov, J. Sedo, and F. Wudl, “Synthesis and Properties of Novel Highly Fluorescent Pyrrolopyridazine Derivatives,” Chemistry of Materials 15, no. 20 (2003): 3759–68.
  • (a) G. H. Sung, B. R. Kim, S. G. Lee, J. J. Kim, and Y. J. Yoon, “2-Substituted-Pyridazin-3(2H)-Ones as Green Electrophilic Agents in Synthesis,” Current Organic Chemistry 16, no. 7 (2012): 852–8.
  • (b) S. Achelle, N. Ple, and A. Turck, “Incorporation of Pyridazine Rings in the Structure of Functionalized π-Conjugated Materials,” RSC Advances 1, no. 3 (2011): 364–88.
  • (a) E. Constable, C. Housecroft, M. Neuburger, S. Reymann, and S. Schaffne, “4‐Substituted and 4,5‐Disubstituted 3,6‐Di(2‐Pyridyl)Pyridazines: Ligands for Supramolecular Assemblies,” European Journal of Organic Chemistry 9 (2008): 1597–607.
  • (b) W. W. Sun, Q. Yue, A. L. Cheng, and E. Q. Gao, “Supramolecular Networks Assembled from Binuclear Complexes with Pyridazine-3,6-Dicarboxylate,” CrystEngComm 10, no. 10 (2008): 1384–94.
  • R. M. Butnariu, and I. I. Mangalagiu, “New Pyridazine Derivatives: Synthesis, Chemistry and Biological Activity,” Bioorganic & Medicinal Chemistry 17, no. 7 (2009): 2823–9.
  • (a) N. G. Kandile, and H. T. Zaky, “New Pyrano[2,3-c]Pyridazine Derivatives with Antimicrobial Activity Synthesized Using Piperidine as the Organocatalyst,” Journal of Enzyme Inhibition and Medicinal Chemistry 30, no. 1 (2015): 44–51.
  • (b) R. A. Tucaliuc, V. V. Cotea, M. Niculaua, C. Tuchilus, D. Mantu, and I. I. Mangalagiu, “New Pyridazine-Fluorine Derivatives: Synthesis, Chemistry and Biological Activity. Part II,” European Journal of Medicinal Chemistry 67 (2013): 367–72. http://dx.doi.org/10.1016/j.ejmech.2013.04.069.
  • D. Mantu, M. C. Luca, C. Moldoveanu, G. Zbancioc, and I. I. Mangalagiu, “Synthesis and Antituberculosis Activity of Some New Pyridazine Derivatives. Part II,” European Journal of Medicinal Chemistry 45, no. 11 (2010): 5164–8..
  • M. Rodrı́guez-Ciria, A. M. Sanz, M. J. R. Yunta, F. Gomez-Contreras, P. Navarro, I. Fernandez, M. Pardo, and, and C. Cano, “Synthesis and Cytotoxic Activity of N,N-Bis-{3-[N-(4-Chlorobenzo[g]-Phthalazin-1-yl)]Aminopropyl}-N-Methylamine: A New Potential DNA Bisintercalator,” Bioorganic & Medicinal Chemistry 11, no. 10 (2003): 2143–8.
  • Y. M. Ali, M. F. Ismail, F. S. M. Abu El-Azm, and M. I. Marzouk, “Design, Synthesis and Pharmacological Assay of Novel Compounds Based on Pyridazine Moiety as Potential Antitumor Agents,” Journal of Heterocyclic Chemistry 56, no. 9 (2019): 2580–91.
  • A. A. Siddiqui, R. Mishra, and M. Shaharyar, “Synthesis, Characterization and Antihypertensive Activity of Pyridazinone Derivatives,” European Journal of Medicinal Chemistry 45, no. 6 (2010): 2283–90.
  • N. A. Khalil, E. M. Ahmed, K. O. Mohamed, Y. M. Nissan, and S. A.-B. Zaitone, “Synthesis and Biological Evaluation of New Pyrazolone-Pyridazine Conjugates as anti-Inflammatory and Analgesic Agents,” Bioorganic & Medicinal Chemistry 22, no. 7 (2014): 2080–9..
  • C. G. Wermuth, “Are Pyridazines Privileged Structures,” MedChemComm 2, no. 10 (2011): 935–41.
  • R. F. George, and D. O. Saleh, “Synthesis, Vasorelaxant Activity and 2D-QSAR Study of Some Novel Pyridazine Derivatives,” European Journal of Medicinal Chemistry 108 (2016): 663–73. http://dx.doi.org/10.1016/j.ejmech.2015.12.015.
  • S. Y. Kang, K. S. Song, J. Lee, S. H. Lee, and J. Lee, “Synthesis of Pyridazine and Thiazole Analogs as SGLT2 Inhibitors,” Bioorganic & Medicinal Chemistry 18, no. 16 (2010): 6069–79.
  • S. Y. Fan, Z. B. Zheng, C. L. Mi, X. B. Zhou, H. Yan, Z. H. Gong, and S. Li, “Synthesis and Evaluation of Novel Chloropyridazine Derivatives as Potent Human Rhinovirus (HRV) Capsid-Binding Inhibitors,” Bioorganic & Medicinal Chemistry 17, no. 2 (2009): 621–4.
  • S. Wang, H. Lu, J. Li, D. Zou, Y. Wu, and Y. Wu, “Synthesis of Functionalized 3-Arylpyridazines via Pd-Catalyzed Decarboxylative Cross-Coupling of Pyridazine-3-Carboxylic Acids,” Tetrahedron Letters 58, no. 12 (2017): 1107–11. http://dx.doi.org/10.1016/j.tetlet.2017.01.083.
  • S. Patnaik, H. C. Dietz, W. Zheng, C. Austin, and J. J. Marugan, “Multi-Gram Scale Synthesis of FR180204,” The Journal of Organic Chemistry 74, no. 22 (2009): 8870–3.
  • H. B. Abed, O. Mammoliti, G. V. Lommen, and P. Herdewijn, “A Short and Convenient Strategy for the Synthesis of Pyridazines via Diaza-Wittig Reaction,” Tetrahedron Letters 53, no. 48 (2012): 6489–91. http://dx.doi.org/10.1016/j.tetlet.2012.09.059.
  • D. Nair, P. Pavashe, S. Katiyar, Namboothiri, and I. N. N. Namboothiri, “Regioselective Synthesis of Pyrazole and Pyridazine Esters from Chalcones and α-Diazo-β-Ketoesters,” Tetrahedron Letters 57, no. 29 (2016): 3146–9. http://dx.doi.org/10.1016/j.tetlet.2016.06.020.
  • M. I. Marzouk, “Microwave Assisted Condensation of Hydrazone Derivatives with Aldehydes,” Bulgarian Chemical Communications 41, no. 1 (2009): 84–8.
  • S. A. Shaker, and M. I. Marzouk, “Utilization of Cyanoacetohydrazide and Oxadiazolyl Acetonitrile in the Synthesis of Some New Cytotoxic Heterocyclic Compounds,” Molecules (Basel, Switzerland) 21, no. 2 (2016): 155.
  • M. Asif, M. Abida, and T. Alam, “Pyridazinone Compounds: A Mini Review on Their Antifungal Activities,” International Journal of New Chemistry 7, no. 4 (2020): 303–17.
  • R. Kuang, H. Wu, P. C. Ting, R. G. Aslanian, J. Cao, D. W. Kim, J. F. Lee, J. Schwerdt, G. Zhou, R. J. Herr, et al, “The Optimization of Pyridazinone Series of Glucan Synthase inhibitors,” Bioorganic & Medicinal Chemistry Letters 22, no. 16 (2012): 5268–71.
  • M. Sönmez, İ. Berber, and E. Akbaş, “Synthesis, Antibacterial and Antifungal Activity of Some New Pyridazinone Metal Complexes,” European Journal of Medicinal Chemistry 41, no. 1 (2006): 101–5..
  • Z. J. Jain, P. S. Gide, and R. S. Kankate, “Biphenyls and Their Derivatives as Synthetically and Pharmacologically Important Aromatic Structural Moieties,” Arabian Journal of Chemistry 10 (2017): s2051–s2066..
  • N. A. Hamed, M. I. Marzouk, M. F. Ismail, and M. H. Hekal, “N'-(1-([1,1'-Biphenyl]-4-yl)Ethylidene)-2-Cyanoacetohydrazide as Scaffold for the Synthesis of Diverse Heterocyclic Compounds as Prospective Antitumor and Antimicrobial Activities,” Synthetic Communications 49, no. 21 (2019): 1–3029.. 00397911.2019.1655578.
  • M. F. Ismail, and A. A. El-Sayed, “Synthesis of Diverse Novel Compounds with Anticipated Antitumor Activities Starting with Biphenyl Chalcone,” Journal of Heterocyclic Chemistry 57, no. 7 (2020): 2990–3001.
  • O. Wurl, and J. P. Obbard, “Organochlorine Pesticides, Polychlorinated Biphenyls and Polybrominated Diphenyl Ethers in Singapore’s Coastal Marine Sediments,” Chemosphere 58, no. 7 (2005): 925–33.
  • K. S. Sajwan, K. S. Kumar, S. Nune, A. Fowler, J. P. Richardson, and B. G. Loganathan, “Persistent Organochlorine Pesticides, Polychlorinated Biphenyls, Polybrominated Diphenyl Ethers in Fish from Coastal Waters off Savannah, GA, USA,” Toxicological & Environmental Chemistry 90, no. 1 (2008): 81–96.
  • N. Abdelgawad, M. F. Ismail, M. H. Hekal, and M. I. Marzouk, “Design, Synthesis, and Evaluation of Some Novel Heterocycles Bearing Pyrazole Moiety as Potential Anticancer Agents,” Journal of Heterocyclic Chemistry 56, no. 6 (2019): 1771–9.
  • A. M. M. Mohamed, M. F. Ismail, H. M. F. Madkour, A. F. Aly, and M. S. Salem, “Straightforward Synthesis of 2-chloro-N-(5-(Cyanomethyl)-1,3,4-Thiadiazol-2-yl)Benzamide as a Precursor for Synthesis of Novel Heterocyclic Compounds with Insecticidal Activity,” Synthetic Communications 50, no. 22 (2020): 3424–42..
  • M. F. Ismail, and A. A. El-Sayed, “Synthesis and in-Vitro Antioxidant and Antitumor Evaluation of Novel Pyrazole-Based Heterocycles,” Journal of the Iranian Chemical Society 16, no. 5 (2019): 921–37..
  • M. F. Ismail, and G. A. Elsayed, “Dodecanoyl Isothiocyanate and N’-(2-Cyanoacetyl)Dodecanehydrazide as Precursors for the Synthesis of Different Heterocyclic Compounds with Interesting Antioxidant and Antitumor Activity,” Synthetic Communications 48, no. 8 (2018): 892–905..
  • M. R. Mahmoud, S. A. Shiba, A. K. El-Ziaty, F. S. M. Abu El-Azm, and M. F. Ismail, “Synthesis and Reactions of Novel 2,5-Disubstituted 1,3,4-Thiadiazoles,” Synthetic Communications 44, no. 8 (2014): 1094–102.
  • M. R. Mahmoud, and M. F. Ismail, “Recent Developments in Chemistry of 1,3,4-Thiadiazoles,” Journal of Advances in Chemistry 10, no. 6 (2014): 2812–42.
  • M. R. Mahmoud, A. K. El-Ziaty, F. S. M. Abu El-Azm, M. F. Ismail, and S. A. Shiba, “Utility of cyano-N-(2-Oxo-1,2-Dihydroindol-3-Ylidene)Acetohydrazide in the Synthesis of Novel Heterocycles,” Journal of Chemical Research 37, no. 2 (2013): 80–5.
  • N. Boonsang, T. Dethoup, N. Singburaudom, N. G. M. Gomes, and A. Kijjoa, “In Vitro Antifungal Activity Screening of Crude Extracts of Soil Fungi against Plant Pathogenic Fungi,” Journal of Biopesticides 7, no. 2 (2014): 156–66.
  • A. Imtiaj, C. Jayasinghe, G. W. Lee, and T. S. Lee, “Antibacterial and Antifungal Activities of Stereum ostrea, an Inedible Wild Mushroom,” Mycobiology 35, no. 4 (2007): 210–4.
  • Y. P. Sun, J. Hyman, and C. Denver, “Toxicity Index-An Improved Method of Comparing the Relative Toxicity of Insecticides,” Journal of Economic Entomology 43, no. 1 (1950): 45–53..

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.