143
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Facile Microwave Synthesis of Pd-Catalyzed Suzuki Reaction for Bis-6-Aryl Imidazo[1,2-a]Pyridine-2-Carboxamide Derivatives with PEG3 Linker

, & ORCID Icon
Pages 2571-2581 | Received 09 Dec 2021, Accepted 23 Feb 2022, Published online: 11 Mar 2022

References

  • N. Kerru, L. Gummidi, S. Maddila, K. K. Gangu, and S. B. Jonnalagadda, “A Review on Recent Advances in Nitrogen-Containing Molecules and Their Biological Applications,” Molecules 25, no. 8 (2020): 1909–50. doi:10.3390/molecules25081909.
  • A. Verma, S. Joshi, and D. Singh, “Imidazole: Having Versatile Biological Activities,” Journal of Chemistry. 2013 (2013): 1–12. doi:10.1155/2013/329412.
  • A. Deep, R. K. Bhatia, R. Kaur, S. Kumar, U. K. Jain, H. Singh, S. Batra, D. Kaushik, and P. K. Deb, “Imidazo[1,2-a]Pyridine Scaffold as Prospective Therapeutic Agents,” Current Topics in Medicinal Chemistry 17, no. 2 (2017): 238–50. doi:10.2174/1568026616666160530153233
  • A. L. Rousseau, P. Matlaba, and C. J. Parkinson, “Multicomponent Synthesis of Imidazo[1,2-a]Pyridines Using Catalytic Zinc Chloride,” Tetrahedron Letters 48, no. 23 (2007): 4079–82. doi:10.1016/j.tetlet.2007.04.008.
  • S. Roopan, S. Patil, and P. Jeyakannu, “Recent Synthetic Scenario on Imidazo[1,2-a]Pyridines Chemical Intermediate,” Research on Chemical Intermediates 42, no. 4 (2016): 2749–90. doi:10.1007/s11164-015-2216-x.
  • M. M. Heravi, and V. Zadsirjan, “Prescribed Drugs Containing Nitrogen Heterocycles: An Overview,” RSC Advances 10, no. 72 (2020): 44247–311. doi:10.1039/D0RA09198G..
  • J. Tong, Y. Zhan, J. Li, P. Liu, and P. Sun, “One‐Pot Synthesis of C3‐Alkylated Imidazopyridines from α‐Bromocarbonyls under Photoredox Conditions,” European Journal of Organic Chemistry 2021, no. 32 (2021): 4541–5. doi:10.1002/ejoc.202100922.
  • H. Christine, N. Pinchas, and B. Carsten, “Zolimidine Analogues: The Synthesis of Imidazo[1,2-α]Pyridine-Based Sulfilimines and Sulfoximines,” Synthesis 47 (2015): 1190–4. doi:10.1055/s-0034-1380109.
  • Chao Zhang, Tianlei Li, Liguo Wang, and Yu Rao, “Synthesis of Diverse Heterocycles via One-Pot Cascade Cross-Dehydrogenative-Coupling (CDC)/Cyclization Reaction,” Organic Chemistry Frontiers 4, no. 3 (2017): 386–91. doi:10.1039/C6QO00522E.
  • M. Ghosh, A. Naskar, S. Mitra, and A. Hajra, “Palladium-Catalyzed α-Selective Alkenylation of Imidazo[1,2-a]Pyridines through Aerobic Cross-Dehydrogenative Coupling Reaction,” European Journal of Organic Chemistry 2015, no. 4 (2015): 715–8. doi:10.1002/ejoc.201403372.
  • L. Albrecht, A. Albrecht, L. K. Ransborg, and K. A. Jørgensen, “Asymmetric Organocatalytic [3 + 2]-Annulation Strategy for the Synthesis of N-Fused Heteroaromatic Compounds,” Chemical Science 2, no. 7 (2011): 1273–7. doi:10.1039/c1sc00122a.
  • Xuebing Chen, Li Zhu, Li Fang, Shengjiao Yan, and Jun Lin, “Catalyst-Free Concise Synthesis of Imidazo[1,2-a]Pyrrolo[3,4-e]Pyridine Derivatives,” RSC Advances 4, no. 20 (2014): 9926–34. doi:10.1039/C3RA45485A.
  • R. J. Fair and T. Yitzhak, “Antibiotics and Bacterial Resistance in the 21st Century,” Perspectives in Medicinal Chemistry 6 (2014): 14459–64. doi:10.4137/PMC.S14459.
  • S. Sakashita, M. Takizawa, J. Sugai, H. Ito, and Y. Yamamoto, “Tetrabutylammonium 2-Pyridyltriolborate Salts for Suzuki–Miyaura Cross-Coupling Reactions with Aryl Chlorides,” Organic Letters 15, no. 17 (2013): 4308–11. doi:10.1021/ol402268g
  • W. Günther, U. Matthias, and S. Birgitt, “Medicinal Chemistry: Challenges and Opportunities,” Angewandte Chemie International Edition 40 (2001): 3341–50. doi:10.1002/1521-3773(20010917)40:183.0.CO;2-D.
  • M. A. Andrade, M. D. Luisa, and R. S. Martins, “New Trends in C–C Cross-Coupling Reactions: The Use of Unconventional Conditions,” Molecules 25, no. 23 (2020): 5506–37. doi:10.3390/molecules25235506.
  • Z. Fu, X. Li, Z. Wang, Z. Li, X. Liu, X. Wu, J. Zhao, X. Ding, X. Wan, F. Zhong, et al, “Optimizing Chemical Reaction Conditions Using Deep Learning: A Case Study for the Suzuki–Miyaura Cross-Coupling Reaction,” Organic Chemistry Frontiers 7, no. 16 (2020): 2269–77. doi:10.1039/D0QO00544D.
  • M. Buskes, and M. J. Blanco, “Impact of Cross-Coupling Reactions in Drug Discovery and Development,” Molecules 25, no. 15 (2020): 3493–514. doi:10.3390/molecules25153493.
  • N. Kamaly, B. Yameen, J. Wu, and O. C. Farokhzad, “Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release,” Chemical Reviews 116, no. 4 (2016): 2602–63. doi:10.1021/acs.chemrev.5b00346
  • Qilei Song, Junpeng Zhao, Guangzhao Zhang, Daniel Taton, Frédéric Peruch, and Stéphane Carlotti, “N-Heterocyclic Carbene/Lewis Acid-Mediated Ring-Opening Polymerization of Propylene Oxide. Part 1: Triisobutylaluminum as an Efficient Controlling Agent,” European Polymer Journal. 134 (2020): 109819–46. doi:10.1016/j.eurpolymj.2020.109819ff.
  • J. Herzberger, K. Niederer, H. Pohlit, J. Seiwert, M. Worm, F. R. Wurm, and F. Holger, “Polymerization of Ethylene Oxide, Propylene Oxide, and Other Alkylene Oxides: Synthesis, Novel Polymer Architectures, and Bioconjugation,” Chemical Reviews 116, no. 4 (2016): 2170–243. doi:10.1021/acs.chemrev.5b00441
  • K. Kapadiya, Y. Jadeja, and R. Khunt, “Synthesis of Purine‐Based Triazoles by Copper (I)‐Catalyzed Huisgen Azide–Alkyne Cycloaddition Reaction,” Journal of Heterocyclic Chemistry 55, no. 1 (2018): 199–208. doi:10.1002/jhet.3025.[Mismatch]
  • K. M. Kapadiya, and R. C. Khunt, “Discovery of Hybrid Purine-Quinoline Molecules and Their Cytotoxic Evaluation,” Letters in Drug Design and Discovery 16, no. 1 (2018): 21–8. doi:10.2174/1570180815666180419151742.
  • C. Pandit, M. Pandya, K. Kapadiya, Y. Jadeja, and J. Gohel, “An Efficient Regioselective Synthesis of N-Alkylated Purine-Triazole Analogues,” Indian Journal of Chemistry Section B: Organic Chemistry Including Medicinal Chemistry 59, no. 8 (2020): 1225–33.
  • M. K. Pandya, P. V. Dholaria, and K. M. Kapadiya, “Synthesis of Lanso Aminopyrimidines as Dominant Chemotherapeutic Agents for Leukaemia,” Russian Journal of Organic Chemistry 56, no. 11 (2020): 1995–2004. doi:10.1134/S1070428020110147.
  • Y. Yu, Y. Han, F. Zhang, Z. Gao, T. Zhu, S. Dong, and M. Ma, “Design, Synthesis, and Biological Evaluation of Imidazo[1,2-a]pyridine Derivatives as Novel PI3K/mTOR Dual Inhibitors,” Journal of Medicinal Chemistry 63, no. 6 (2020): 3028–46. doi:10.1021/acs.jmedchem.9b01736
  • S. Feng, D. Hong, B. Wang, X. Zheng, K. Miao, L. Wang, H. Yun, L. Gao, S. Zhao, and H. C. Shen, “Discovery of Imidazopyridine Derivatives as Highly Potent Respiratory Syncytial Virus Fusion Inhibitors,” ACS Medicinal Chemistry Letters 6, no. 3 (2015): 359–62. doi:10.1021/acsmedchemlett.5b00008.
  • N. C. Warshakoon, S. Wu, A. Boyer, R. Kawamoto, J. Sheville, S. Renock, K. Xu, M. Pokross, A. G. Evdokimov, R. Walter, et al, “A Novel Series of Imidazo[1,2-a]Pyridine Derivatives as HIF-1alpha Prolyl Hydroxylase Inhibitors,” Bioorganic & Medicinal Chemistry Letters 16, no. 21 (2006): 5598–601. doi:10.1016/j.bmcl.2006.08.089.
  • S. Ulloora, R. Shabaraya, and A. V. Adhikari, “New 6-Bromoimidazo[1,2-a]Pyridine-2-Carbohydrazide Derivatives: Synthesis and Anticonvulsant Studies,” Medicinal Chemistry Research 23, no. 6 (2014): 3019–28. doi:10.1007/s00044-013-0887-7.
  • T. Wang, Y. Wu, S. L. Kuan, O. Dumele, M. Lamla, Y. W. David, N. M. Arzt, J. Thomas, J. O. Mueller, B. K. Christopher, et al, “A Disulfide Intercalator Toolbox for the Site-Directed Modification of Polypeptides,” Chemistry (Weinheim an Der Bergstrasse, Germany) 21, no. 1 (2015): 228–38. doi:10.1002/chem.201403965
  • V. B. Pansuriya, K. M. Kapadiya, S. L. Rathod, U. B. Prajapati, B. M. Vavaiya, J. B. Padariya, F. U. Vaidya, C. Pathak, and H. M. Parekh, “Anti-Cancer Activity of Gabapentin and Chiral Amino Acids-Based Hybrid-Peptides against MCF-7 Breast Cancer Cell-Line,” Journal of Pharmaceutical Research International 33, no. 46A (2021): 431–46. doi:10.9734/jpri/2021/v33i46A32886.
  • M. Honcharenko, B. Bestas, M. Jezowska, A. B. Wojtczak, P. Moreno, J. Romanowska, S. M. Bachle, E. Darzynkiewicz, J. Jemielity, C. I. E. Smith, et al, “Synthetic m3G-CAP Attachment Necessitates a Minimum Trinucleotide Constituent to be Recognised as a Nuclear Import Signal,” RSC Advances 6, no. 56 (2016): 51367–73. doi:10.1039/C6RA09568B.
  • Y. Qin, D. Long, X. Zhu, Z. Zhou, H. Chai, and C. Zhao, “Synthesis, Crystal Structure, and DFT Study of a New Compound 6-(2-Fluorophenyl)-N-(p-Tolyl)Imidazo[1,2-A]Pyridine-2-Carboxamide,” Journal of Structural Chemistry 60, no. 12 (2019): 1917–24. doi:10.1134/S0022476619120072.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.