94
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Three Component One-Pot Synthesis of Novel 8-Benzyloxy-5-{2-[N′-(1,3-Diphenyl-1H-Pyrazol-4-Ylmethylene)-Hydrazino]-Thiazol-4-yl}-3,4-Dihydro-1H-Quinolin-2-Ones

ORCID Icon, , & ORCID Icon
Pages 2672-2679 | Received 07 Dec 2021, Accepted 01 Mar 2022, Published online: 21 Mar 2022

References

  • . S. Raut, A. Tidke, B. Dhotre, and M. A. Pathan, “Different Strategies to the Synthesis of Indazole and Its Derivatives: A Review,” Mini-Reviews in Organic Chemistry 17, no. 4 (2020): 363–404. doi:10.2174/1570193X16666190430160324.
  • K. H. Altmann, “Epothilone B and Its Analogs—A New Family of Anticancer Agents,” Mini Reviews in Medicinal Chemistry 3, no. 2 (2003): 149–58. doi:10.2174/1389557033405269.
  • Jos H. M. Lange, Peter C. Verveer, Stefan J. M. Osnabrug, and Geb M. Visser, “Rapid Microwave-Enhanced Synthesis of 4-Hydroxyquinolinones under Solvent-Free Conditions,” Tetrahedron Letters 42, no. 7 (2001): 1367–69. doi:10.1016/S0040-4039(00)02244-9.
  • P. Carmeliet and R. K. Jain, “Angiogenesis in Cancer and Other Diseases,” Nature 407, no. 6801 (2000): 249–57. doi:10.1038/35025220.
  • L. F. Hennequin, A. P. Thomas, C. Johnstone, E. S. E. Stokes, P. A. Ple, J. J. M. Lohmann, D. J. Ogilvie, M. Dukes, S. R. Wedge, J. O. Curwen, et al., “Design and Structure–Activity Relationship of a New Class of Potent VEGF Receptor Tyrosine Kinase Inhibitors,” Journal of Medicinal Chemistry 42, no. 26 (1999): 5369–89. doi:10.1021/jm990345w.
  • C. Vittorio, B. Guyen, Y. Opoku-Boahen, J. Mann, S. M. Gowan, M. Lloyd, A. R. Martin, and N. Stephen, “A Novel Inhibitor of Human Telomerase Derived from 10H-Indolo[3,2-b]Quinoline,” Bioorganic and Medicinal Chemistry Letters 10 (2000): 2063–66.
  • L. J. Guo, C. X. Wei, J. H. Jia, L. M. Zhao, and Z. S. Quan, “Design and Synthesis of 5-Alkoxy-[1,2,4]Triazolo[4,3-a]Quinoline Derivatives with Anticonvulsant Activity,” European Journal of Medicinal Chemistry 44, no. 3 (2009): 954–58. doi:10.1016/j.ejmech.2008.07.010.
  • J. N. Delgado and W. A. Remers, Wilson and Gisvold’s Textbook of Organic Medicinal and Pharmaceutical Chemistry, 10th ed. (Lippincott Williams & Wilkins, 1998), 197.
  • F. Clemence, O. L. Martret, F. Delevallee, J. Benzoni, A. Jouanen, S. Jouquey, M. Mouren, and R. Deraedt, “4-Hydroxy-3-Quinolinecarboxamides with Antiarthritic and Analgesic Activities,” Journal of Medicinal Chemistry 31, no. 7 (1988): 1453–62. doi:10.1021/jm00402a034.
  • I. Yildirim, N. Ozdemir, Y. Akcamur, M. Dincer, and O. Andac, 4-Benzoyl-1,5-Diphenyl-1H-Pyrazole-3-Carboxylic Acid Methanol Solvate (Hoboken: Wiley, 2005).
  • E. V. Pimenova and É. V. Voronina, “Antimicrobial Activity of Pyrazoles and Pyridazines Obtained by Intreraction of 4-Aryl-3-Arylhydrazono-2,4-Dioxobutanoic Acids and Their Esters with Hydrazines,” Pharmaceutical Chemistry Journal 35, no. 11 (2001): 602–04. doi:10.1023/A:1015141710100.
  • A. E. El-Sayed Amr, N. A. Abdel-Latif, and M. M. Abdalla, “Synthesis of Some New Testosterone Derivatives Fused with Substituted Pyrazoline Ring as Promising 5alpha-Reductase Inhibitors,” Acta Pharmaceutica 56, no. 2 (2006): 203–18.
  • S. Chimichi, M. Boccalini, M. M. M. Hassan, G. Viola, F. Dall'Acqua, and M. Curini, “Synthesis, Structural Determination and Photo-Antiproliferative Activity of New 3-Pyrazolyl or -Isoxazolyl Substituted 4-Hydroxy-2(1H)-Quinolinones,” Tetrahedron 62, no. 1 (2006): 90–96. doi:10.1016/j.tet.2005.09.135.
  • E. Theophil and H. Siegfried, The Chemistry of Heterocycles Structure: Reactions, Syntheses, and Applications, 2nd ed. (Weinheim, Germany: Wiley-VCH Verlag GmbH & Co., 2003).
  • G. Wells, T. D. Bradshaw, P. Diana, A. Seaton, D. F. Shi, A. D. Westwell, and M. F. Stevens, “Antitumour Benzothiazoles. Part 10: The Synthesis and Antitumour Activity of Benzothiazole Substituted Quinol Derivatives,” Bioorganic & Medicinal Chemistry Letters 10, no. 5 (2000): 513–15. doi:10.1016/s0960-894x(00)00027-5.
  • S. R. Pattan, C. H. Suresh, V. D. Pujar, V. V. K. Reddy, V. P. Rasal, and B. C. Koti, “Synthesis and antidiabetic activity of 2-amino[5′(4-sulphonylbenzylidine)-2,4-thiazolidinedione]-7-chloro-6-fluorobenzothiazole,” Indian Journal of Chemistry Section B: Organic Chemistry Including Medicinal Chemistry 44 (2005): 2404–08.
  • D. Lednicer, L. A. Mitscher, and G. I. Georg, Organic Chemistry of Drug Synthesis, vol. 4 (John Wiley & Sons, Inc., New York, 1990).
  • S. Rollas and S. G. Kucukguzel, “Biological Activities of Hydrazone Derivatives,” Molecules 12, no. 8 (2007): 1910–39. (1910)doi:10.3390/12081910.
  • B. S. Dawane, S. G. Konda, V. T. Kamble, S. A. Chavan, R. B. Bhosale, and B. M. Shaikh, “Multicomponent One-Pot Synthesis of Substituted Hantzsch Thiazole Derivatives under Solvent Free Conditions,” E-Journal of Chemistry 6, no. s1 (2009): S358–S62. doi:10.1155/2009/752580.
  • A. A. Chavan and N. R. Pai, “Synthesis and Antimicrobial Screening of 5-Arylidene-2-Imino-4-Thiazolidinones,” Arkivoc 2007, no. 16 (2007): 148–55. doi:10.3998/ark.5550190.0008.g16.
  • V. J. Jayachandrane, R. Shah, K. Patel, and G. M. Sreenivasa, “Synthesis, Characterization and Anthelmintic Activity (Perituma-Posthuma) of Fluoro Substituted Benzothiazole for Biological and Pharmacological Screening,” International Journal of Pharma and Bio Sciences 1, no. 3 (2010): 201–204.
  • K. S. Kim, S. D. Kimball, R. N. Misra, D. B. Rawlins, J. T. Hunt, H.-Y. Xiao, S. Lu, L. Qian, W.-C. Han, W. Shan, et al, “Discovery of Aminothiazole Inhibitors of Cyclin-Dependent Kinase 2: Synthesis, X-Ray Crystallographic Analysis, and Biological Activities,” Journal of Medicinal Chemistry 45, no. 18 (2002): 3905–27. doi:10.1021/jm0201520.
  • K. D. Hargrave, F. K. Hess, and J. T. Oliver, “N-(4-Substituted-Thiazolyl)Oxamic Acid Derivatives, a New Series of Potent, Orally Active Antiallergy Agents,” Journal of Medicinal Chemistry 26, no. 8 (1983): 1158–63. doi:10.1021/jm00362a014.
  • J. C. Jaen, L. D. Wise, B. W. Caprathe, H. Tecle, S. Bergmeier, C. C. Humblet, T. G. Heffner, L. T. Meltzer, and T. A. Pugsley, “4-(1,2,5,6-Tetrahydro-1-Alkyl-3-Pyridinyl)-2-Thiazolamines: A Novel Class of Compounds with Central Dopamine Agonist Properties,” Journal of Medicinal Chemistry 33, no. 1 (1990): 311–17. doi:10.1021/jm00163a051.
  • K. Tsuji and H. Ishikawa, (1944) “Synthesis and Anti-Pseudomonal Activity of New 2-Isocephems with a Dihydroxypyridone Moiety at C-7,” Bioorganic & Medicinal Chemistry Letters 4, no. 13 (1994): 1601–06. doi:10.1016/S0960-894X(01)80574-6.
  • D. Lednicer, L. A. Mitscher, and G. I. Georg, Organic Chemistry of Drug Synthesis, vol. 4 (Wiley, New York, 1990), 95–97.
  • D. S. Wagare, P. D. Netankar, M. Shaikh, M. Farooqui, and A. Durrani, “Highly Efficient Microwave-Assisted One-Pot Synthesis of 4-Aryl-2-Aminothiazoles in Aqueous Medium,” Environmental Chemistry Letters 15, no. 3 (2017): 475–79. doi:10.1007/s10311-017-0619-1.
  • B. S. Dawane, S. G. Konda, V. T. Kamble, S. A. Chavan, R. B. Bhosale, and M. S. Baseer, “Multicomponent One-Pot Synthesis of Substituted Hantzsch Thiazole Derivatives Under Solvent Free Conditions,” E-Journal of Chemistry 6 (2009): 358–362.
  • R. Aggarwal, S. Kumar, and S. P. Singh, “Sodium Carbonate-Mediated Facile Synthesis of 4-Substituted-2-(3,5-Dimethylpyrazol-1-yl)Thiazoles under Solvent-Free Conditions,” Journal of Sulfur Chemistry 33, no. 5 (2012): 521–25. doi:10.1080/17415993.2012.711331.
  • M. M. Heravi, N. Poormohammad, Y. S. Beheshtiha, and B. Baghernejad, “Efficient Synthesis of 2,4-Disubstituted Thiazoles under Grinding,” Synthetic Communications 41, no. 4 (2011): 579–82. doi:10.1080/00397911003629440.
  • H. S. Mujahed, D. Wagare, F. Mazahar, and D. Ayesha, “Facile and green one-pot synthesis of 2-aminothiazoles in glycerol-water,” Heterocyclic Letter 7, no. 4 (2017): 1061–64.
  • D. S. Wagare, S. E. Shirsath, M. Shaikh, and P. Netankar, “Sustainable Solvents in Chemical Synthesis: A Review,” Environmental Chemistry Letters 19, no. 4 (2021): 3263–82. doi:10.1007/s10311-020-01176-6.
  • T. S. Choudhare, D. S. Wagare, V. T. Kadam, A. A. Kharpe, and D. Netankar, “Rapid One-Pot Multicomponent Dioxane-HCl Complex Catalyzed Solvent-Free Synthesis of 3,4-Dihydropyrimidine-2-One Derivatives,” Polycyclic Aromatic Compounds 41 (2021): 1-9. doi:10.1080/10406638.2021.1873808.
  • Z. Xu, X. F. Song, Y. Q. Hu, M. Qiang, and Z. S. Lv, “ Azide-Alkyne Cycloaddition towards 1H-1,2,3-Triazole-Tethered Gatifloxacin and Isatin Conjugates: Design, Synthesis and In Vitro Anti-Mycobacterial Evaluation,” European Journal of Medicinal Chemistry 138 (2017): 66–71. doi:10.1016/j.ejmech.2017.05.057.
  • Y. L. Fan, X. W. Cheng, J. B. Wu, M. Liu, F. Z. Zhang, Z. Xu, and L. S. Feng, “Antiplasmodial and Antimalarial Activities of Quinolone Derivatives: An Overview,” European Journal of Medicinal Chemistry 146 (2018): 1–14. doi:10.1016/j.ejmech.2018.01.039.
  • Z. G. Luo, J. J. Tan, Y. Zeng, C. X. Wang, and L. M. Hu, “Development of Integrase Inhibitors of Quinolone Acid Derivatives for Treatment of AIDS: An Overview,” Mini Reviews in Medicinal Chemistry 10, no. 11 (2010): 1046–57. doi:10.2174/1389557511009011046.
  • P. C. Sharma, M. Chaudhary, A. Sharma, M. Piplani, H. Rajak, and O. Prakash, “Insight View on Possible Role of Fluoroquinolones in Cancer Therapy,” Current Topics in Medicinal Chemistry 13, no. 16 (2013): 2076–96. doi:10.2174/15680266113139990133.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.