71
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Electronic Structure, Solvation Effects and Wave Function Based Properties of a New Triazole Based Symmetric Chromene Derivative of Apigenin

, , & ORCID Icon
Pages 2810-2822 | Received 23 Nov 2021, Accepted 11 Mar 2022, Published online: 27 Mar 2022

References

  • M. Manzano, and M. Vallet-Regi, “Mesoporous Silica Nanoparticles for Drug Delivery,” Advanced Functional Materials 30, no. 2 (2020): 1902634. doi:10.1002/adfm.2019.02634.
  • K. Kalishwaralal, G. Luboshits, and M. A. Firer, “Synthesis of Gold Nanoparticle: Peptide-Drug Conjugates for Targeted Drug Delivery,” Methods in Molecular Biology 2059 (2020): 145–54. doi:10.1007/978-1-4939-9798-5_6.
  • L. Grondahl, G. Lawrie, A. Anitha, and A. Shejwalkar, “Applications of Alginate Biopolymer in Drug Delivery,” in Biointegration of Medical Implant Materials, 2nd ed. (Sawston, Cambridge: Woodhead Publishing Series in Biomaterials, 2020), 375–403. doi:10.1016/B978-0-08-102680-9.00014-7.
  • M. J. Fowler, J. D. Cotter, B. E. Knight, E. M. Sevick-Muraca, D. I. Sandberg, and R. W. Sirianni, “Intrathecal Drug Delivery in the Era of Nanomedicine,” Advanced Drug Delivery Reviews 165, no. 166 (2020): 77–95. doi:10.1106/j.addr.2020.02.006.
  • C. T. Matea, T. Mocan, T. F. Tabaran, T. Pop, O. Mosteanu, C. Puia, C. Iancu, and L. Mocan, “Quantum Dots in Imaging, Drug Delivery and Sensor Applications,” International Journal of Nanomedicine 12 (2017): 5421–31. doi:10.2147/IJN.S138624.
  • E. R. Lorden, H. M. Levinson, and K. W. Leong, “Integration of Drug, Protein, and Gene Delivery Systems with Regenerative Medicine,” Drug Delivery and Translational Research 5, no. 2 (2015): 168–86. doi:10.1007/s13346-013-0165-8.
  • Y. K. Sung, and S. W. Kim, “Recent Advances in the Development of Gene Delivery Systems,” Biomaterials Research 23, no. 23 (2019): 8. doi:10.1186/s40824-019-0156-z.
  • P. Pamies, and A. Stoddary, “Materials for Drug Delivery,” Nature Materials 12 (2013): 957. doi:10.1038/nmat3798.
  • Y. Zhang, H. F. Chan, and K. W. Leong, “Advanced Materials and Processing for Drug Delivery: The Past and the Future,” Advanced Drug Delivery Reviews 65, no. 1 (2013): 104–20. doi:10.1016/j.addr.2012.10.003.
  • A. Vashist, and S. Ahmad, “Hydrogels: Smart Materials for Drug Delivery,” Oriental Journal of Chemistry 29, no. 03 (2013): 861–70. doi:10.13005/ojc/290303.
  • M. R. Mohammadi, A. Nojoomi, M. Mozafari, A. Dubnika, M. Inayathullah, and J. Rajadas, “Nanomaterials Engineering for Drug Delivery: A Hybridization Approach,” Journal of Materials Chemistry. B 5, no. 22 (2017): 3995–4018. doi:10.1039/c6tb03247h.
  • B. Khodashenas, M. Ardjmand, M. S. Baei, A. S. Rad, and A. Akbarzadeh, “Conjugation of Pectin Biopolymer with Au-Nanoparticles as a Drug Delivery System: Experimental and DFT Studies,” Applied Organometallic Chemistry 34, no. 6 (2020): e5609. doi:10.1002/aoc.5609.
  • E. Cortes, E. Marquez, J. R. Mora, E. Puello, N. Rangel, A. De Moya, and J. Trilleras, “Theoretical Study of the Adsorption Process of Antimalarial Drugs into Acrylamide-Base Hydrogel Model Using DFT Methods: The First Approach to the Rational Design of a Controlled Drug Delivery System,” Processes 7, no. 7 (2019): 396. doi:10.3390/pr7070396.
  • M. Najafi, A. Morsali, and M. R. Bozorgmehr, “DFT Study of SiO2 Nanoparticles as Drug Delivery System: structural and Mechanistic Aspects,” Structural Chemistry 30, no. 3 (2019): 715–26. doi:10.1007/s11224-018-1227-9.
  • M. Yoosefian, M, and M. Jahani, “A Molecular Study on Drug Delivery System Based on Carbon Nanotube for the Novel Norepinephrine Prodrug, Droxidopa,” Journal of Molecular Liquids 284 (2019): 258–64. doi:10.1016/j.molliq.2019.04.016.
  • M. Sheikhi, S. Shahab, M. Khaleghian, M. Ahmadianarog, F. Azarakhshi, and R. Kumar, “Investigation of the Adsorption Rubraca Anticancer Drug on the CNT(4,4-8) Nanotube as a Factor of Drug Delivery: A Theoretical Study Based on DFT Method,” Current Molecular Medicine 19, no. 7 (2019): 473–86. doi:10.2174/1566524019666190506143152.
  • R. Ahmadi, M. R. J. Sarevestani, and B. Sadeghi, “Computational Study of the Fullerene Effects on the Properties of 16 Different Drugs a Review,” International Journal of Nano Dimensions 9 (2018): 325–35.
  • M. K. Hazrati, Z. Javanshir, and Z. Bagheri, “B24N24 Fullerene as a Carrier for 5-Fluorouracil Anticancer Drug Delivery, DFT Studies,” Journal of Molecular Graphics and Modelling 77 (2017): 17–24. doi:10.1016/j.jmgm.2017.08.003.
  • A. I. Carballo-Villalobos, M. E. Gonzalez-Trujano, and F. J. Lopez-Munoz, “Evidence of Mechanism of Action of Anti-Inflammatory/Antinociceptive Activities of Acacetin,” European Journal of Pain (London, England) 18, no. 3 (2014): 396–405. doi:10.1002/j.1532-2149.2013.00378.x.
  • Y. Y. Zhou, B. H. Zhong, and W. G. Shi, “Progress in Research of Acacetin Biologic Properties,” Chinese Journal of New Drugs 23, no. 9 (2014): 1053–6+1080.
  • J. S. Roh, J. Y. Han, J. H. Kim, and J. K. Hwang, “Inhibitory Effects of Active Compounds Isolated from Safflower (Carthamus Tinctorius L.) Seeds for Melanogenesis,” Biological & Pharmaceutical Bulletin 27, no. 12 (2004): 1976–8. doi:10.1248/bpb.27.1976.
  • A. Chatterjee, S. Sarkar, and S. K. Saha, “Acacetin 7-O-b-d-Galactopyranoside from Chrysanthemum Indicum,” Phytochemistry 20, no. 7 (1981): 1760–1. doi:10.1016/S0031-9422(00)98580-7.
  • C. D. Kim, J. D. Cha, S. Li, and I. H. Cha, “The Mechanism of Acacetin-Induced Apoptosis on Oral Squamous Cell Carcinoma,” Archives of Oral Biology 60, no. 9 (2015): 1283–98. doi:10.1016/j.archoralbio.2015.05.009.
  • W. Z. Xiao, W. H. Zhou, Q. Ma, W. G. Cui, Q. Y. Mei, and X. Zhao, “Serotonergically Dependent Antidepressant-Like Activity on Behavior and Stress Axis Responsivity of Acacetin,” Pharmacological Research 146 (2019): 104310. doi:10.1016/j.phrs.2019.104310.
  • S. Li, Q. Lv, X. Sun, T. Tang, X. Deng, Y. Yin, and L. Li, “Acacetin Inhibits Streptococcus Pneumoniae Virulence by Targeting Pneumolysin,” The Journal of Pharmacy and Pharmacology 72, no. 8 (2020): 1092–100. doi:10.1111/jphp.13279.
  • E. B. Kwon, M. J. Kang, H. W. Ryu, S. Lee, J. W. Lee, M. K. Lee, H. S. Lee, S. U. Lee, S. R. Oh, and M. O. Kim, “Acacetin Enhances Glucose Uptake Through Insulin-Independent GLUT4 Translocation in L6 Myotubes,” Phytomedicine: international Journal of Phytotherapy and Phytopharmacology 68 (2020): 153178. doi:10.1016/j.phymed.2020.153178.
  • S. Shukla, and S. Gupta, “Apigenin: A Promising Molecule for Cancer Prevention,” Pharmaceutical Research 27, no. 6 (2010): 962–78. doi:10.1007/s11095-010-0089-7.
  • Q. Q. Wang, N. Cheng, W. B. Yi, S. M. Peng, and X. Q. Zou, “Synthesis, Nitric Oxide Release, and α-Glucosidase Inhibition of Nitric Oxide Donating Apigenin and Chrysin Derivatives,” Bioorganic & Medicinal Chemistry 22, no. 5 (2014): 1515–21. doi:10.1016/j.bmc.2014.01.038.
  • S. Takekoshi, H. Nagata, and K. Kitatani, “Flavonoids Enhance Melano-Genesis in Human Melanoma Cells,” The Tokai Journal of Experimental and Clinical Medcine 39 (2014): 116–21. Pmid: 25248426
  • A. Khalili, M. T. Baei, and S. G. G. Ghaboos, “Improvement of Antioxidative Activity of Apigenin by B12N12 Nanocluster: Antioxidative Mechanism Analysis,” ChemistrySelect 5, no. 6 (2020): 1829–36. doi:10.1002/slct.201904170.
  • M. Imran, T. A. Gondal, M. Atif, M. Shahbaz, T. B. Qaisarani, M. H. Mughal, B. Salehi, M. Martorell, and J. S. Rad, “Apigenin as an Anticancer Agent,” Phytotherapy Research : PTR 34, no. 8 (2020): 1812–28. doi:10.1002/ptr.6647.
  • T. Su, C. Huang, C. Yang, T. Jiang, J. Su, M. Chen, S. Fatima, R. Gong, X. Hu, Z. Bian, et al, “Apigenin Inhibits STAT3/CD36 Signaling Axis and Reduces Visceral Obesity,” Pharmacological Research 152 (2020): 104586. doi:10.1016/j.phrs.2019.104586.
  • L. Liang, and D. Astruc, “The Copper(I)-Catalyzed Alkyne-Azide Cycloaddition (CuAAC) “Click” Reaction and Its Application, an Overview,” Coordination Chemistry Reviews 255, no. 23-24 (2011): 2933–45. doi:10.1016/j.ccr.2011.06.028.
  • D. Dheer, V. Singh, and R. Shankar, “Medicinal Attributes of 1,2,3-Triazoles: Current Developments,” Bioorganic Chemistry 71 (2017): 30–54. doi:10.1016/j.bioorg.2017.01.010.
  • X. Jiang, X. Hao, L. Jing, G. Wu, D. Kang, X. Liu, and P. Zhan, “Recent Applications of Click Chemistry in Drug Discovery,” Expert Opinion on Drug Discovery 14, no. 8 (2019): 779–89. doi:10.1080/17460441.2019.1614910.
  • A. Rani, G. Singh, A. Singh, U. Maqbool, G. Kaur, and J. Singh, “CuAAC-Ensembled 1,2,3-Triazole Linked Isosteres as Pharmacophores in Drug Discovery,” RSC Advances 10, no. 10 (2020): 5610–35. doi:10.1039/C9RA09510A.
  • Q. K. Shen, H. Deng, S. B. Wang, Y. S. Tian, and Z. S. Quan, “Synthesis, and Evaluation of In vitro and In vivo Anticancer Activity of 14-Substituted Oridonin Analogs: A Novel and Potent Cell Cycle Arrest and Apoptosis Inducer Through the p53-MDM2 Pathway,” European Journal of Medicinal Chemistry 173 (2019): 15–31. doi:10.1016/j.ejmech.2019.04.005.
  • Belma Zengin Kurt, Aydan Dag, Berna Doğan, Serdar Durdagi, Andrea Angeli, Alessio Nocentini, Claudiu T. Supuran, and Fatih Sonmez, “Synthesis, Biological Activity and Multiscale Molecular Modeling Studies of Bis-Coumarins as Selective Carbonic Anhydrase IX and XII Inhibitors with Effective Cytotoxicity Against Hepatocellular Carcinoma,” Bioorganic Chemistry 87 (2019): 838–50. doi:10.1016/j.bioorg.2019.03.003.
  • J. Khazir, B. A. Mir, G. Chashoo, L. Pilcher, and D. Riley, “Synthesis and Anticancer Activity of N-9- and N-7-Substituted 1,2,3-Triazole Analogues of 2,6-di-Substituted Purine,” Medicinal Chemistry Research 29, no. 1 (2020): 33–45. doi:10.1007/s00044-019-02456-9.
  • Jurupula Ramprasad, Vinay Kumar Sthalam, Rama Linga Murthy Thampunuri, Supriya Bhukya, Ramesh Ummanni, Sridhar Balasubramanian, and Srihari Pabbaraja, “Synthesis and Evaluation of a Novel Quinoline-Triazole Analogs for Antitubercular Properties via Molecular Hybridization Approach,” Bioorganic & Medicinal Chemistry Letters 29, no. 20 (2019): 126671. doi:10.1016/j.bmcl.2019.126671.
  • A. C. Cunha, V. F. Ferreira, M. G. F. Vaz, R. A. A. Cassaro, J. A. L. C. Resende, C. Q. Sacramento, J. Costa, J. L. Abrantes, T. M. L. Souza, and A. K. Jordao, “Chemistry and Anti-Herpes Simplex Virus Type 1 Evaluation of 4-Substituted-1H-1,2,3-Triazole-Nitroxyl-Linked Hybrids,” Molecular Diversity 25, no. 4 (2021): 2035–43. doi:10.1007/s11030-020-10094-2.
  • I. Capan, S. Servi, I. Yildirim, and Y. Sert, “Synthesis, DFT Study, Molecular Docking and Drug-Likeness Analysis of the New Hydrazine-1-Carbothioamide, Triazole and Thiadiazole Derivatives: Potential Inhibitors of HSP90,” ChemistrySelect 6, no. 23 (2021): 5838–46. doi:10.1002/slct.202101086.
  • Y. Sert, F. Ucun, G. A. El-Hiti, K. Smith, and A. S. Hegazy, “Spectroscopic Investigations and DFT Calculations on 3-(Diacetylamino)-2-Ethyl-3H-Quinazolin-4-One,” Journal of Spectroscopy 2016 (2016): 1–15. Article ID. doi:10.1155/2016/5396439.
  • Yusuf Sert, Mehmet Gümüş, Halil Gökce, İbrahim Kani, and İrfan Koca, “Molecular Docking, Hirshfeld Surface, Structural, Spectroscopic, Electronic, NLO and Thermodynamic Analyses on Novel Hybrid Compounds Containing Pyrazole and Coumarin Cores,” Journal of Molecular Structure 1171 (2018): 850–66. doi:10.1016/j.molstruc.2018.06.069.
  • Mehmet Gümüş, Şemsi N. Babacan, Yeliz Demir, Yusuf Sert, İrfan Koca, and İlhami Gülçin, “Discovery of Sulfadrug-Pyrrole Conjugate as Carbonic Anhydrase and Acetylcholinesterase Inhibitors,” Archiv Der Pharmazie 355, no. 1 (2022): 2100242. doi:10.1002/ardp.202100242.
  • Y. Sheena Mary, Fatmah A. M. Al-Omary, Gamal A. E. Mostafa, Ali A. El-Emam, P. S. Manjula, B. K. Sarojini, B. Narayana, Stevan Armaković, Sanja J. Armaković, and C. Van Alsenoy, “Insight into the Reactive Properties of Newly Synthesized 1,2,4-Triazole Derivative by Combined Experimental (FT-IR and FT-Raman) and Theoretical (DFT and MD) Study,” Journal of Molecular Structure 1141 (2017): 542–50. doi:10.1016/j.molstruc.2017.04.001.
  • J. S. Al-Otaibi, A. H. Almuqrin, Y. S. Mary, and Y. S. Mary, “Comprehensive Quantum Mechanical Studies on Three Bioactive Anastrozole Based Triazole Analogues and Their SERS Active Graphene Complex,” Journal of Molecular Structure 1217 (2020): 128388. doi:10.1016/j.molstruc.2020.128388.
  • M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, et al, Gaussian 09, Revision B.01 (Wallingford CT: Gaussian, Inc., 2010).
  • R. Dennington, T. Keith, and J. Millam, Gaussview 5 (Shawnee Mission KS: Semichem. Inc., 2009).
  • B. Mennucci, and J. Tomasi, “Continuum Solvation Models: A New Approach to the Problem of Solute’s Charge Distribution and Cavity Boundaries,” The Journal of Chemical Physics 106, no. 12 (1997): 5151–8. doi:10.1063/1.473558.
  • T. Lu, and F. Chen, “Multiwfn: A Multifunctional Wavefunction Analyzer,” Journal of Computational Chemistry 33, no. 5 (2012): 580–92. doi:10.1002/jcc.22885.
  • A. V. Marenich, C. J. Cramer, and D. G. Truhlar, “Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions,” The Journal of Physical Chemistry. B 113, no. 18 (2009): 6378–96. doi:10.1021/jp810292n.
  • G. D. R. Matos, D. Y. Kyu, H. H. Loeffler, J. D. Chodera, M. R. Shirts, and D. L. Mobley, “Approaches for Calculating Solvation Free Energies and Enthalpies Demonstrated with an Update of the FreeSolv Database,” Journal of Chemical and Engineering Data 62, no. 5 (2017): 1559–69. doi:10.1021/acs.jced.7b00104.
  • M. Kaur, Y. S. Mary, H. T. Varghese, C. Y. Panicker, H. S. Yathirajan, M. S. Siddegowda, and C. Van Alsenoy, “Vibrational Spectroscopic, Molecular Structure, First Hyperpolarizability and NBO Studies of 4'-Methylbiphenyl-2-Carbonitrile,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 98 (2012): 91–9. doi:10.1016/j.saa.2012.08.061.
  • E. D. Glendening, A. E. Reed, J. E. Carpenter, and F. Weinhold, NBO Version 3.1 (Pittsburgh, PA: Gaussian Inc., 2003).
  • N. P. G. Roeges, A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures (New York: John Wiley and Sons Inc., 1994).
  • R. M. Silverstein, G. C. Bassler, and T. C. Morril, Spectrometric Identification of Organic Compounds, 5th ed. (Singapore: John Wiley and Sons Inc., 1991).
  • R. F. W. Bader, “A Quantum Theory of Molecular Structure and Its Applications,” Chemical Reviews 91, no. 5 (1991): 893–928. doi:10.1021/cr00005a013.
  • M. Hossain, R. Thomas, Y. S. Mary, K. S. Resmi, S. Aramkovic, S. J. Aramkovic, A. K. Nanda, G. Vijayakumar, and C. Van Alsenoy, “Understanding Reactivity of Two Newly Synthetized Imidazole Derivatives by Spectroscopic Characterization and Computational Study,” Journal of Molecular Structure 1158 (2018): 176–96. doi:10.1016/j.molstruc.2018.01.029.
  • L. R. Domingo, M. Rios-Gutierrez, and P. Perez, “Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity,” Molecules 21, no. 6 (2016): 748. doi:10.3390/molecules21060748.
  • P. K. Chattaraj, U. Sarkar, and D. R. Roy, “Electrophilicity Index,” Chemical Reviews 106, no. 6 (2006): 2065–91. doi:10.1021/cr040109f.
  • R. A. Costa, G. A. Barros, J. N. da Silva, K. M. Oliveira, D. P. Bezerra, M. B. P. Soares, and E. V. Costa, “Experimental and Theoretical Study of Spectral Features, Reactivity, Solvation, Topoisomerase I Inhibition and in Vitro Cytotoxicity in Human HepG2 Cells of Guadiscine and Gaudiscidine Aporphine Alkaloids,” Journal of Molecular Structure 1229 (2021): 129844. doi:10.1016/j.molstruc.2020.129844.
  • R. Thomas, Y. S. Mary, K. S. Resmi, B. Narayana, B. K. Sarojini, G. Vijayakumar, and C. Van Alsenoy, “Two Neoteric Pyrazole Compounds as Potential anti-Cancer Agents:Synthesis, Electronic Structure, Physico-Chemical Properties and Docking Analysis,” Journal of Molecular Structure 1181 (2019): 455–66. doi:10.1016/j.molstruc.2019.01.003.
  • Y. S. Mary, T. Ertan-Bolelli, R. Thomas, A. R. Krishnan, K. Bolelli, E. N. Kasap, T. Onkol, and I. Yildiz, “Quantum Mechanical Studies of Three Aromatic Halogen-Substituted Bioactive Sulfonamidobenzoxazole Compounds with Potential Light Harvesting Properties,” Polycyclic Aromatic Compounds 41, no. 7 (2021): 1563–79. doi:10.1080/10406638.2019.1689405.
  • Y. Sheena Mary, Gözde Yalcin, Y. Shyma Mary, K. S. Resmi, Renjith Thomas, Tijen Önkol, Esin Nagihan Kasap, and Ilkay Yildiz, “Spectroscopic, Quantum Mechanical Studies, Ligand Protein Interactions and Photovoltaic Efficiency Modeling of Some Bioactive Benzothiazolinone Acetamide Analogs,” Chemical Papers 74, no. 6 (2020): 1957–64. doi:10.1007/s11696-019-01047-7.
  • Y. S. Mary, Y. S. Mary, K. S. Resmi, V. S. Kumar, R. Thomas, and B. Sureshkumar, “Detailed Quantum Mechanical, Molecular Docking, QSAR Prediction, Photovoltaic Light Harvesting Efficiency Analysis of Benzil and its Halogenated Analogues,” Heliyon 5, no. 11 (2019): e02825. doi:10.1016/j.heliyon.2019.e02825.
  • Y. S. Mary, P. B. Miniyar, Y. S. Mary, K. S. Resmi, C. Y. Panicker, S. Armakovic, S. J. Armakovic, R. Thomas, and B. Sureshkumar, “Synthesis and Spectroscopic Study of Three New Oxadiazole Derivatives with Detailed Computational Evaluation of Their Reactivity and Pharmaceutical Potential,” Journal of Molecular Structure 1173 (2018): 469–80. doi:10.1016/j.molstruc.2018.07.026.
  • S. R. Sheeja, N. A. Mangalam, M. R. P. Kurup, Y. S. Mary, K. Raju, H. T. Varghese, and C. Y. Panicker, “Vibrational Spectroscopic Studies and Computational Study of Quinoline-2-Carbaldehyde Benzoyl Hydrazone,” Journal of Molecular Structure 973, no. 1-3 (2010): 36–40. doi:10.1016/j.molstruc.2010.03.016.
  • R. I. Al-Wabli, K. S. Resmi, Y. S. Mary, C. Y. Panicker, M. I. Attia, A. A. El-Emam, and C. Van Alsenoy, “Vibrational Spectroscopic Studies, Fukui Functions, HOMO-LUMO, NLO, NBO Analysis and Molecular Docking Study of (E)-1-(1,3-Benzodioxol-5-yl)-4,4-Dimethylpent-1-en-3-One, a Potential Precursor to Bioactive Agents,” Journal of Molecular Structure 1123 (2016): 375–83. doi:10.1016/j.molstruc.2016.07.044.
  • J. S. Murray, J. M. Seminario, P. Politzer, and P. Sjober, “Average Local Ionization Energies Computed on the Surfaces of Some Strained Molecules,” International Journal of Quantum Chemistry 38, no. S24 (1990): 645–53. doi:10.1002/qua.560382462.
  • A. Bielenica, S. Beegum, Y. S. Mary, Y. S. Mary, R. Thomas, S. Armakovic, S. J. Armakovic, S. Madeddu, M. Struga, and C. Van Alsenoy, “Experimental and Computational Analysis of 1-(4-Chloro-3-Nitrophenyl)-3-(3,4-Dichlorophenyl)Thiourea,” Journal of Molecular Structure 1205 (2020): 127587. doi:10.1016/j.molstruc.2019.127587.
  • R. Thomas, Y. S. Mary, K. S. Resmi, B. Narayana, B. K. Sarojini, S. Armakovic, S. J. Armakovic, G. Vijayakumar, C. Van Alsenoy, and B. J. Mohan, “Synthesis and Spectroscopic Study of Two New Pyrazole Derivatives with Detailed Computational Evaluation of Their Reactivity and Pharmaceutical Potential,” Journal of Molecular Structure 1181 (2019): 599–612. doi:10.1016/j.molstruc.2019.01.014.
  • J. S. Al-Otaibi, Y. S. Mary, S. Fazil, Y. S. Mary, and S. Sarala, “Modeling the Structure and Reactivity Landscapes of a Pyrazole-Ammonium Ionic Derivative Using Wavefunction-Dependent Characteristics and Screening for Potential anti-Inflammatory Activity,” Journal of Biomolecular Structure and Dynamics (2021): 1–13. doi:10.1080/07391102.2021.1957020.
  • F. Fuster, A. Sevin, and B. Silvi, “Topological Analysis of the Electron Localization Function (ELF) Applied to the Electrophilic Aromatic Substitution,” The Journal of Physical Chemistry A 104, no. 4 (2000): 852–8. doi:10.1021/jp992783k.
  • K. Koumpouras, and J. A. Larsson, “Distinguishing between Chemical Bonding and Physical Binding Using Electron Localization Function (ELF)),” Journal of Physics. Condensed Matter: An Institute of Physics journal 32, no. 31 (2020): 315502. doi:10.1088/1361-648X/ab7fd8.
  • S. Priya Yeddu, P. Thangaiyan, A. Veeraiah, D. Vijaya, K. E. Srikanth, A. Irfan, and R. Thomas, “Vibrational Spectral Studies, Quantum Mechanical Properties and Biological Activity Prediction and Inclusion Molecular Self-Assembly Formation of N-N’-Dimethylethylene Urea,” Biointerface Research in Applied Chemistry 12 (2022): 3996–4017. doi:10.33263/BRIAC123.39964017.
  • H. Jacobsen, “Localized-Orbital Locator (LOL) Profiles of Chemical Bonding,” Canadian Journal of Chemistry 86, no. 7 (2008): 695–702. doi:10.1139/v08-052.
  • N. Al-Zaqri, T. Pooventhiran, A. Alsalme, D. J. Rao, S. S. Rao, A. Sankar, and R. Thomas, “First-Principle Studies of Istradefylline with Emphasis on the Stability, Reactivity, Interactions and Wavefunction-Dependent Properties,” Polycyclic Aromatic Compounds (2020): 1–15. doi:10.1080/10406638.2020.1857273.
  • A. Lagunin, A. Stepanchikova, D. Filimonov, and V. Poroikov, “PASS: prediction of Activity Spectra for Biologically Active Substances,” Bioinformatics (Oxford, England) 16, no. 8 (2000): 747–8. doi:10.1093/bioinformatics/16.8.747.
  • Y. S. Mary, H. T. Varghese, C. Y. Panicker, M. Girisha, B. K. Sagar, H. S. Yathirajan, A. A. Al-Saadi, and C. Van Alsenoy, “Vibrational Spectra, HOMO, LUMO, NBO, MEP Analysis and Molecular Docking Study of 2,2-Diphenyl-4-(Piperidin-1-yl)Butanamide,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 150 (2015): 543–56. doi:10.1016/j.saa.2015.05.090.
  • Y. S. Mary, C. Y. Panicker, M. Sapnakumari, B. Narayana, B. K. Sarojini, A. A. Al-Saadi, C. Van Alsenoy, J. A. War, and H. K. Fun, “Infrared Spectrum, Structural and Optical Properties and Molecular Docking Study of 3-(4-Fluorophenyl)-5-Phenyl-4,5-Dihydro-1H-Pyrazole-1-Carbaldehyde,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 138 (2015): 529–38. doi:10.1016/j.saa.2014.11.041.
  • Y. S. Mary, C. Y. Panicker, M. Sapnakumari, B. Narayana, B. K. Sarojini, A. A. Al-Saadi, C. Van Alsenoy, and J. A. War, “FT-IR, NBO, HOMO-LUMO, MEP Analysis and Molecular Docking Study of 1-[3-(4-Fluorophenyl)-5-Phenyl-4,5-Dihydro-1H-Pyrazol-1-yl]Ethanone,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 136 (2015): 483–93. doi:10.1016/j.saa.2014.09.061.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.