97
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis and In Vitro Antimicrobial Evaluation of New Quinolone Based 2-Arylamino Pyrimidines

, &
Pages 2844-2865 | Received 11 Oct 2021, Accepted 14 Mar 2022, Published online: 27 Mar 2022

References

  • Andriole V. T, “The Quinolones: Prospects,” in The Quinolones (Academic Press, 2000), 477–95.
  • B. Kunze, G. Hofle, and H. Reichenbach, “The Aurachins, New Quinoline Antibiotics from Myxobacteria: Production, Physico-Chemical and Biological Properties,” The Journal of Antibiotics 40, no. 3 (1987): 258–65. doi:10.7164/antibiotics.40.258.
  • M. Adams, A. A. Wube, F. Bucar, R. Bauer, O. Kunert, and E. Haslinger, “Quinolone Alkaloids from Evodia Rutaecarpa: A Potent New Group of Antimycobacterial Compounds,” International Journal of Antimicrobial Agents 26, no. 3 (2005): 262–4. doi:10.1016/j.ijantimicag.2005.06.003.
  • T. Toube, J. Murphy, and A. Cross, “The Structures of Edulitine and Edulinine—XXIV: Spectra and Stereochemistry,” Tetrahedron 23, no. 5 (1967): 2061–5. doi:10.1016/0040-4020(67)80039-5.
  • T. D. Pham, Z. M. Ziora, and M. A. Blaskovich, “Quinolone Antibiotics,” MedChemComm 10, no. 10 (2019): 1719–39. doi:10.1039/c9md00120d.
  • A. M. Emmerson, and A. M. Jones, “The Quinolones: Decades of Development and Use,” Journal of Antimicrobial Chemotherapy 51 (2003): 11–30.
  • G. S. Bisacchi, “Origins of the Quinolone Class of Antibacterials: An Expanded “Discovery Story”,” Journal of Medicinal Chemistry 58, no. 12 (2015): 4874–82. doi:10.1021/jm501881c.
  • R. Wise, A. M. Andrews, and G. Danks, “ In-vitro Activity of Enoxacin (CL-919), a New Quinoline Derivative, Compared with that of Other Antimicrobial Agents,” The Journal of Antimicrobial Chemotherapy 13, no. 3 (1984): 237–44. doi:10.1093/jac/13.3.237.
  • K. Anna, and P. Ian, “The Comparative in-Vitro Activity of Eight Newer Quinolones and Nalidixic Acid,” Journal of Antimicrobial Chemotherapy, no. 18 (1986): 1–20.
  • M. I. Andersson, and A. P. MacGowan, “Development of the Quinolones,” Journal of Antimicrobial Chemotherapy 51, no. 90001 (2003): 1–11. doi:10.1093/jac/dkg212.
  • L. F. Hennequin, A. P. Thomas, C. Johnstone, E. S. Stokes, P. A. Ple, J. J. M. Lohmann, D. J. Ogilvie, M. Dukes, S. R. Wedge, J. O. Curwen, et al, “Design and Structure − Activity Relationship of a New Class of Potent VEGF Receptor Tyrosine Kinase Inhibitors,” Journal of Medicinal Chemistry 42, no. 26 (1999): 5369–89. doi:10.1021/jm990345w.
  • L. A. Mitscher, “Bacterial Topoisomerase Inhibitors: Quinolone and Pyridone Antibacterial Agents,” Chemical Reviews 105, no. 2 (2005): 559–92. doi:10.1021/cr030101q.
  • V. E. Anderson, and N. Osheroff, “Type II Topoisomerases as Targets for Quinolone Antibacterials: Turning Dr. Jekyll into Mr. Hyde,” Current Pharmaceutical Design 7, no. 5 (2001): 337–53. doi:10.2174/1381612013398013.
  • C. D. Lima, and A. Mondragón, “Mechanism of Type II DNA Topoisomerases: A Tale of Two Gates,” Structure (London, England: 1993) 2, no. 6 (1994): 559–60. doi:10.1016/S0969-2126(00)00055-1.
  • D. C. Hooper, “Emerging Mechanisms of Fluoroquinolone Resistance,” Emerging Infectious Diseases 7, no. 2 (2001): 337–41. doi:10.3201/eid0702.010239.
  • K. J. Aldred, S. A. McPherson, C. L. Turnbough, Jr, R. J. Kerns, and N. Osheroff, “Topoisomerase IV-Quinolone Interactions Are Mediated through a Water-Metal Ion Bridge: Mechanistic Basis of Quinolone Resistance,” Nucleic Acids Research 41, no. 8 (2013): 4628–39. doi:10.1093/nar/gkt124.
  • B. Kocsis, J. Domokos, and D. Szabo, “Chemical Structure and Pharmacokinetics of Novel Quinolone Agents Represented by Avarofloxacin, Delafloxacin, Finafloxacin, Zabofloxacin and Nemonoxacin,” Annals of Clinical Microbiology and Antimicrobials 15, no. 1 (2016): 1–8. doi:10.1186/s12941-016-0150-4.
  • M. S. Butler, M. A. Blaskovich, and M. A. Cooper, “Antibiotics in the Clinical Pipeline at the End of 2015,” The Journal of Antibiotics 70, no. 1 (2017): 3–24. doi:10.1038/ja.2016.72.
  • N. German, M. Malik, J. D. Rosen, K. Drlica, and R. J. Kerns, “Use of Gyrase Resistance Mutants to Guide Selection of 8-Methoxy-Quinazoline-2,4-Diones,” Antimicrobial Agents and Chemotherapy 52, no. 11 (2008): 3915–21. doi:10.1128/AAC.00330-08.
  • S. X. Cai, Z. L. Zhou, J. C. Huang, E. R. Whittemore, Z. O. Egbuwoku, Y. Lu, J. E. Hawkinson, R. M. Woodward, E. Weber, and J. F. W. Keana, “Synthesis and Structure-Activity Relationships of 1,2,3,4-Tetrahydroquinoline-2,3,4-Trione 3-Oximes: Novel and Highly Potent Antagonists for NMDA Receptor Glycine Site,” Journal of Medicinal Chemistry 39, no. 17 (1996): 3248–55. doi:10.1021/jm960214k.
  • L. A. McQuaid, E. C. Smith, D. Lodge, E. Pralong, J. H. Wikel, D. O. Calligaro, and P. J. O'Malley, “3-Phenyl-4-Hydroxyquinolin-2(1H)-Ones: Potent and Selective Antagonists at the Strychnine-Insensitive Glycine Site on the N-methyl-D-aspartate Receptor Complex,” Journal of Medicinal Chemistry 35, no. 18 (1992): 3423–5. doi:10.1021/jm00096a019.
  • J. J. Kulagowski, R. Baker, N. R. Curtis, P. D. Leeson, I. M. Mawer, A. M. Moseley, M. P. Ridgill, M. Rowely, I. Stansfield, A. C. Foster, et al, “3’-(Arylmethyl) - and 3’-(Aryloxy)-3-Phenyl-4- Ydroxyquinolin- 2(1H)-Ones: Orally Active Antagonists of the Glycine Site on the NMDA Receptor,” Journal of Medicinal Chemistry 37, no. 10 (1994): 1402–5.
  • T. Stanczyk, W. Kubiak, W. Wawrzynowicz, and B. Wenerska, Chemical Abstracts, no. 114 (1991): 44453.
  • S. Hasegawa, K. Matsunaga, M. Muto, and S. Hanada, “Platinum Compound and Agent for Treating Malignant Tumor,” Chemical Abstracts, no. 114 (1991): 34897.
  • A. Afonso, J. Weinstein, and M. Gentles, “Antiviral Compounds,” Chemical Abstracts, no. 117 (1992): 26358.
  • A. Afonso, J. Weinstein, M. J. Gentles, J. Margaret, and S. B. Rosenblum, “Antiviral Compounds and Antihypertensive Compounds,” Chemical Abstracts, no. 117 (1992): 90161.
  • S. Sarveswari, V. Vijayakumar, R. Siva, and R. Priya, “Synthesis of 4-Hydroxy-2(1H)-Quinolone Derived Chalcones, Pyrazolines and Their Antimicrobial, in Silico Antimalarial Evaluations,” Applied Biochemistry and Biotechnology 175, no. 1 (2015): 43–64. doi:10.1007/s12010-014-1256-9.
  • M. Abass, and B. B. Mostafa, “Synthesis and Evaluation of Molluscicidal and Larvicidal Activities of Some Novel Enaminones Derived from 4-Hydroxyquinolinones: Part IX,” Bioorganic & Medicinal Chemistry 13, no. 22 (2005): 6133–44. doi:10.1016/j.bmc.2005.06.038.
  • S. Sarveswari, and V. Vijayakumar, “Synthesis and Antibacterial Screening of 3-(4, 5-Dihydro-5-Aryl-1H-Pyrazol-3-yl)-4- Hydroxyquinolin- 2(1H)-Ones,” International Journal of Chemtech Research, no. 8 (2015): 782–8.
  • M. Roussaki, B. Hall, S. C. Lima, A. C. da Silva, S. Wilkinson, and A. Detsi, Bioorg. “Synthesis and anti-Parasitic Activity of a Novel Quinolinone- Chalcone Series,” Bioorganic & Medicinal Chemistry Letters 23, no. 23 (2013): 6436–41. doi:10.1016/j.bmcl.2013.09.047.
  • A. A. Sayed, A. Elfayoumi, S. M. Sami, and E. A. Mohamad, “Some 3-Substituted-4-Hydroxycarbostyrils,” Acta Chimica Academiae Scientiarum Hungaricae, no. 94 (1977): 131–9.
  • P. Pitchai, M. Sathiyaseelan, and R. M. Gengan, “4-Dihydroxy-3-(Indol-2-)-yl-Quinoline via Substantial Methodology-Fisher Indole Synthesis,” Heterocyclic Letters, no. 6 (2016): 11–4.
  • H. M. Hassanin, and D. Abdel-Kader, “Synthesis of Some Novel Binuclear Heterocyclic Compounds from 6-Ethyl-3-Nitropyrano [3, 2-c]-Quinoline-4, 5 (6H)-Dione,” Heterocycles 87, no. 2 (2013): 369–80. doi:10.3987/COM-12-12639.
  • M. Abass, M. Hassan, and M. M. Abdel, “Substituted Quinolinones, Part 12: Heterocyclization Reactions of 3‐(3‐Chromonyl) Acryloylquinolinone with Some Bifunctional Nucleophiles,” Synthetic Communications 37, no. 2 (2007): 329–52. doi:10.1080/00397910601033930.
  • E. A. Bell, and R. G. Foster, “Structure of Lathyrine,” Nature (London) 194 (1962): 91–2. doi:10.1038/194091a0.
  • A. M. Joffe, J. D. Farley, D. Linden, and G. Goldsand, “Trimethoprim-Sulfamethoxazole-Associated Aseptic Meningitis: Case Reports and Review of the Literature,” The American Journal of Medicine 87, no. 3 (1989): 332–8. doi:10.1016/S0002-9343(89)80160-3.
  • K. Alla, and S. Sarveswari, “An Ultrasound-Promoted Efficient Synthesis of New 4-Hydroxy-2 (1H)-quinolone-Derived Amino Nitrile Pyridines,” Iranian Journal of Science and Technology, Transactions A: Science 43, no. 2 (2019): 465–75. doi:10.1007/s40995-018-0567-z.
  • CLSI, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, Approved Standard, 9th ed., CLSI document M07-A9. Clinical and Laboratory Standards Institute, 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087, USA, 2012.
  • Reference Method for Broth Dilution Antifungal Susceptibility Testing Filamentous Fungi, Approved Standard, 2nd ed., CLSI document M38-A2, 950, West Valley Roadn Suite 2500, Wayne, Pennsylvania 19087, USA, 2008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.