352
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

DTP/SiO2 Assisted Synthesis of New Benzimidazole-Thiazole Conjugates Targeting Antitubercular and Antioxidant Activities

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 2866-2887 | Received 29 Nov 2021, Accepted 14 Mar 2022, Published online: 28 Mar 2022

References

  • World Health Organization. 2018. “Global Tuberculosis Report 2018.” WHO United Nations. https://www.who.int/tb/global-report-2019.
  • Beena, D. S. Rawat, “Antituberculosis Drug Research: A Critical Overview,” Medicinal Research Reviews 33 (2013): 693–764. doi:10.1002/med.21262.
  • T. R. Deshmukh, S. P. Khare, V. S. Krishna, D. Sriram, J. N. Sangshetti, V. M. Khedkar, and B. B. Shingate, “Synthesis, Bioevaluation and Molecular Docking Study of New Piperazine and Amide Linked Dimeric 1,2,3-Triazoles,” Synthetic Communications 50, no. 2 (2020): 271–88. doi:10.1080/00397911.2019.1695275.
  • T. R. Deshmukh, V. S. Krishna, D. Sriram, J. N. Sangshetti, and B. B. Shingate, “Synthesis and Bioevaluation of α,α’-Bis(1H-1,2,3-Triazol-5-Ylmethylene) Ketones,” Chemical Papers 74, no. 3 (2020): 809–20. doi:10.1007/s11696-019-00908-5.
  • M. Yan, and S. Ma, “Recent Advances in the Research of Heterocyclic Compounds as Antitubercular Agents,” Chemmedchem 7, no. 12 (2012): 2063–75. doi:10.1002/cmdc.201200339.
  • R. Vidhya, K. Rathnakumar, V. Balu, and K. V. Pugalendi, “Oxidative Stress, Antioxidant Status and Lipid Profile in Pulmonary Tuberculosis Patients before and after anti-Tubercular Therapy,” The Indian Journal of Tuberculosis 66, no. 3 (2019): 375–81. doi:10.1016/j.ijtb.2018.11.002.
  • T. R. Deshmukh, S. P. Khare, V. S. Krishna, D. Sriram, J. N. Sangshetti, O. Bhusnure, V. M. Khedkar, and B. B. Shingate, “Design and Synthesis of New Aryloxy-Linked Dimeric 1,2,3-Triazoles via Click Chemistry Approach: Biological Evaluation and Molecular Docking Study,” Journal of Heterocyclic Chemistry 56, no. 8 (2019): 2144–62. doi:10.1002/jhet.3608.
  • S. T. Dhumal, A. R. Deshmukh, M. R. Bhosle, V. M. Khedkar, L. U. Nawale, D. Sarkar, and R. A. Mane, “Synthesis and Antitubercular Activity of New 1,3,4-Oxadiazoles Bearing Pyridyl and Thiazolyl Scaffolds,” Bioorganic & Medicinal Chemistry Letters 26, no. 15 (2016): 3646–51. doi:10.1016/j.bmcl.2016.05.093.
  • S. T. Dhumal, A. R. Deshmukh, K. R. Kharat, B. R. Sathe, S. S. Chavan, and R. A. Mane, “Copper Fluorapatite Assisted Synthesis of New 1,2,3-Triazoles Bearing Benzothiazolyl Moiety and Their Antibacterial and Anticancer Activities,” New Journal of Chemistry 43, no. 20 (2019): 7663–73. doi:10.1039/C9NJ00377K.
  • M. B. Bhalerao, S. T. Dhumal, A. R. Deshmukh, L. U. Nawale, V. M. Khedkar, D. Sarkar, and R. A. Mane, “New Bithiazolyl Hydrazones: Novel Synthesis, Characterization and Antitubercular Evaluation,” Bioorganic & Medicinal Chemistry Letters 27, no. 2 (2017): 288–94. doi:10.1016/j.bmcl.2016.11.056.
  • Chetna Kharbanda, Mohammad Sarwar Alam, Hinna Hamid, Kalim Javed, Sameena Bano, Abhijeet Dhulap, Yakub Ali, Syed Nazreen, and Saqlain Haider, “Synthesis and Evaluation of Pyrazolines Bearing Benzothiazole as anti-Inflammatory Agents,” Bioorganic & Medicinal Chemistry 22, no. 21 (2014): 5804–12. doi:10.1016/j.bmc.2014.09.028.
  • A. S. M. Hosan, “Synthesis, Modelling and Molecular Docking of New 5-Arylazo-2-Chloroacetamido Thiazole Derivatives as Antioxidant Agent,” Journal of Molecular Structure 1206 (2020): 127712–6.
  • Sally I. Eissa, Amel M. Farrag, Samir Y. Abbas, Mohamed F. El Shehry, Ahmed Ragab, Eman A. Fayed, and Yousry A. Ammar, “Novel Structural Hybrids of Quinoline and Thiazole Moieties: Synthesis and Evaluation of Antibacterial and Antifungal Activities with Molecular Modeling Studies,” Bioorganic Chemistry 110 (2021): 104803. doi:10.1016/j.bioorg.2021.104803.
  • Alla Zablotskaya, Izolda Segal, Athina Geronikaki, Tatiana Eremkina, Sergey Belyakov, Marina Petrova, Irina Shestakova, Liga Zvejniece, and Vizma Nikolajeva, “Synthesis, Physicochemical Characterization, Cytotoxicity, Antimicrobial, anti-Inflammatory and Psychotropic Activity of New N-[1,3-(Benzo)Thiazol-2-yl]-ω-[3,4-Dihydroisoquinolin-2(1H)-yl]Alkanamides,” European Journal of Medicinal Chemistry 70 (2013): 846–56. doi:10.1016/j.ejmech.2013.10.008.
  • Y. Bansal, and O. Silakari, “The Therapeutic Journey of Benzimidazoles: A Review,” Bioorganic & Medicinal Chemistry 20, no. 21 (2012): 6208–36. doi:10.1016/j.bmc.2012.09.013.
  • Pankaj Sharma, Dinesh Thummuri, T. Srinivasa Reddy, Kishna Ram Senwar, V. G. M. Naidu, Gannoju Srinivasulu, Suresh K. Bharghava, and Nagula Shankaraiah, “New (E)-1-Alkyl-1H-Benzo[d]Imidazol-2-yl)Methylene)Indolin-2-Ones: Synthesis, in Vitro Cytotoxicity Evaluation and Apoptosis Inducing Studies,” European Journal of Medicinal Chemistry 122 (2016): 584–600. doi:10.1016/j.ejmech.2016.07.019.
  • T. M. A. Eldebss, A. M. Farag, M. M. Abdulla, and R. K. Arafa, “Novel Benzo[d]Imidazole-Based Heterocycles as Broad Spectrum anti-Viral Agents: Design, Synthesis and Exploration of Molecular Basis of Action,” Mini Reviews in Medicinal Chemistry 16, no. 1 (2016): 67–83. doi:10.2174/138955751601151029115533.
  • A. Mobinikhaledi, N. Foroughifar, M. Kalhor, and M. Mirabolfathy, “Synthesis and Antifungal Activity of Novel 2-Benzimidazolylimino-5-Arylidene-4-Thiazolidinones,” Journal of Heterocyclic Chemistry 47 (2009): 77–80. doi:10.1002/jhet.264.
  • H. M. Refaat, “Synthesis and Anticancer Activity of Some Novel 2-Substituted Benzimidazole Derivatives,” European Journal of Medicinal Chemistry 45, no. 7 (2010): 2949–56. doi:10.1016/j.ejmech.2010.03.022.
  • P. Naik, P. Murumkar, R. Giridhar, and M. R. Yadav, “Angiotensin II Receptor Type 1 (AT1) Selective Nonpeptidic Antagonists: A Perspective,” Bioorganic & Medicinal Chemistry 18, no. 24 (2010): 8418–56. doi:10.1016/j.bmc.2010.10.043.
  • M. Mader, A. de Dios, C. Shih, R. Bonjouklian, T. Li, W. White, B. L. de Uralde, C. Sanchez-Martinez, M. de Prado, C. Jaramillo, et al, “Imidazolyl Benzimidazoles and Imidazo[4,5-b]Pyridines as Potent p38alpha MAP Kinase Inhibitors with Excellent in Vivo Antiinflammatory Properties,” Bioorganic & Medicinal Chemistry Letters 18, no. 1 (2008): 179–83. doi:10.1016/j.bmcl.2007.10.106.
  • D. Seenaiah, P. R. Reddy, G. M. Reddy, A. Padmaja, V. Padmavathi, and N. S. Krishna, “Synthesis, Antimicrobial and Cytotoxic Activities of Pyrimidinyl Benzoxazole, Benzothiazole and Benzimidazole,” European Journal of Medicinal Chemistry 77 (2014): 1–7. doi:10.1016/j.ejmech.2014.02.050.
  • P. P. Mogle, R. J. Meshram, S. V. Hese, R. D. Kamble, S. S. Kamble, R. N. Gacche, and B. S. Dawane, “Synthesis and Molecular Docking Studies of a New Series of Bipyrazol-yl-Thiazol-Ylidene-Hydrazinecarbothioamide Derivatives as Potential Antitubercular Agents,” MedChemComm 7, no. 7 (2016): 1405–20. doi:10.1039/C6MD00085A.
  • A. N. Ambhore, S. S. Kamble, S. N. Kadam, R. D. Kamble, M. J. Hebade, S. V. Hese, M. V. Gaikwad, R. J. Meshram, R. N. Gacche, and B. S. Dawane, “Design, Synthesis and in Silico Study of Pyridine Based 1,3,4-Oxadiazole Embedded Hydrazinecarbothioamide Derivatives as Potent anti-Tubercular Agent,” Computational Biology and Chemistry 80 (2019): 54–65. doi:10.1016/j.compbiolchem.2019.03.002.
  • M. J. Hebade, R. D. Kamble, S. V. Hese, P. P. Mogle, A. N. Ambhore, S. N. Kadam, and B. S. Dawane, “A Rapid, Mild, and Efficient Method for C-5 Iodination/Thiocyanation of 2-Aminothiazoles,” Phosphorus, Sulfur, and Silicon and the Related Elements 191, no. 8 (2016): 1155–9. doi:10.1080/10426507.2016.1149851.
  • S. N. Kadam, A. N. Ambhore, M. J. Hebade, R. D. Kamble, S. V. Hese, M. V. Gaikwad, P. D. Gavhane, and B. S. Dawane, “Metal-Free One-Pot Chemoselective Thiocyanation of Imidazothiazoles and 2-Aminothiazoles with in Situ Generated N-Thiocyanatosuccinimide,” Synlett 29, no. 14 (2018): 1902–8. doi:10.1055/s-0037-1609553.
  • Shrikant V. Hese, Rohan J. Meshram, Rahul D. Kamble, Pratima P. Mogle, Kapil K. Patil, Sonali S. Kamble, Rajesh N. Gacche, and Bhaskar S. Dawane, “Antidiabetic and Allied Biochemical Roles of New Chromeno-Pyrano Pyrimidine Compounds: synthesis, in Vitro and in Silico Analysis,” Medicinal Chemistry Research 26, no. 4 (2017): 805–18. doi:10.1007/s00044-017-1794-0.
  • M. J. Hebade, T. R. Deshmukh, and S. T. Dhumal, “Silica Supported Dodecatungstophosphoric Acid (DTP/SiO2): an Efficient and Recyclable Heterogeneous Catalyst for Rapid Synthesis of Quinoxalines,” Synthetic Communications 51, no. 16 (2021): 2510–20. doi:10.1080/00397911.2021.1939060.
  • S. T. Dhumal, A. R. Deshmukh, L. D. Khillare, M. Arkile, D. Sarkar, and R. A. Mane, “Synthesis and Antitubercular Activity of New Thiazolidinones with Pyrazinyl and Thiazolyl Scaffolds,” Journal of Heterocyclic Chemistry 54, no. 1 (2017): 125–30. doi:10.1002/jhet.2552.
  • A. R. Deshmukh, S. T. Dhumal, L. U. Nawale, V. M. Khedkar, D. Sarkar, and R. A. Mane, “Dicationic Liquid Mediated Synthesis of Tetrazoloquinolinyl Methoxy Phenyl 4-Thiazolidinones and Their Antibacterial and Antitubercular Evaluation,” Synthetic Communications 49, no. 4 (2019): 587–601. doi:10.1080/00397911.2018.1564928.
  • R. Srinivasulu, K. R. Kumar, and P. V. V. Satyanarayana, “Facile and Efficient Method for Synthesis of Benzimidazole Derivatives Catalyzed by Zinc Triflate,” Green and Sustainable Chemistry 4, no. 1 (2014): 33–7. doi:10.4236/gsc.2014.41006.
  • M. Kidwai, A. Jahan, and D. Bhatnagar, “Polyethylene Glycol: A Recyclable Solvent System for the Synthesis of Benzimidazole Derivatives Using CAN as Catalyst,” Journal of Chemical Sciences 122, no. 4 (2010): 607–12. doi:10.1007/s12039-010-0095-7.
  • Liene Grigorjeva, Edvards Liepinsh, Solofoniaina Razafimahefa, Aleh Yahorau, Sviatlana Yahorava, Philippe Rasoanaivo, Aigars Jirgensons, and Jarl E. S. Wikberg, “Semisynthesis of Libiguin a and Its Analogues by Trans-Lactonization of Phragmalin,” The Journal of Organic Chemistry 79, no. 9 (2014): 4148–53. doi:10.1021/jo500318w.
  • R. R. Nagawade, and D. B. Shinde, “BF3OEt2 Promoted Solvent-Free Synthesis of Benzimidazole Derivatives,” Russian Journal of Organic Chemistry 42, no. 3 (2006): 453–6. doi:10.1134/S1070428006030201.
  • K. A. Shaikh, and V. A. Patil, “An Efficient Solvent-Free Synthesis of Imidazolines and Benzimidazoles Using K4[Fe(CN)6] Catalysis,” Organic Communications 5 (2012): 12–7.
  • J. Zhu, Z. Zhang, C. Miao, W. Liu, and W. Sun, “Synthesis of Benzimidazoles from o-Phenylenediamines and DMF Derivatives in the Presence of PhSiH3,” Tetrahedron 73, no. 25 (2017): 3458–62. doi:10.1016/j.tet.2017.05.018.
  • R. Trivedi, S. K. De, and R. A. Gibbs, “A Convenient One-Pot Synthesis of 2-Substituted Benzimidazoles,” Journal of Molecular Catalysis A: Chemical 245, no. 1–2 (2006): 8–11. doi:10.1016/j.molcata.2005.09.025.
  • V. R. Ruiz, A. Corma, and M. J. Sabater, “New Route for the Synthesis of Benzimidazoles by a One-Pot Multistep Process with Mono and Bifunctional Solid Catalysts,” Tetrahedron 66, no. 3 (2010): 730–5. doi:10.1016/j.tet.2009.11.048.
  • T. Mahajan, K. Dhimant, G. Kapse, and M. Hugar, “ZnCl2-SiO2 Catalyzed Solvent Free Synthesis of Benzimidazole Derivatives under Microwave Irradiation,” Journal of Applied Chemistry 2 (2013): 50–4.
  • Y. Venkateswarlu, S. R. Kumar, and P. Leelavathi, “Facile and Efficient One-Pot Synthesis of Benzimidazoles Using Lanthanum Chloride,” Organic and Medicinal Chemistry Letters 3, no. 1 (2013): 7. doi:10.1186/2191-2858-3-7.
  • Z. Gan, Q. Tian, S. Shang, W. Luo, Z. Dai, H. Wang, D. Li, X. Wang, and J. Yuan, “Imidazolium Chloride-Catalyzed Synthesis of Benzimidazoles and 2-Substituted Benzimidazoles from o-Phenylenediamines and DMF Derivatives,” Tetrahedron 74, no. 52 (2018): 7450–7456. doi:10.1016/j.tet.2018.11.014.
  • S. D. Sharma, and D. Konwar, “Practical, Ecofriendly, and Chemoselective Method for the Synthesis of 2-Aryl-1-Arylmethyl-1H-Benzimidazoles Using Amberlite IR-120 as a Reusable Heterogeneous Catalyst in Aqueous Media,” Synthetic Communications 39, no. 6 (2009): 980–991. doi:10.1080/00397910802448440.
  • K. Bahrami, M. M. Khodaei, and A. Nejati, “Synthesis of 1,2-Disubstituted Benzimidazoles, 2-Substituted Benzimidazoles and 2-Substituted Benzothiazoles in SDS Micelles,” Green Chemistry 12, no. 7 (2010): 1237–1241. doi:10.1039/c000047g.
  • B. Zou, Q. Yuan, and D. Ma, “Synthesis of 1,2-Disubstituted Benzimidazoles by a Cu-Catalyzed Cascade Aryl Amination/Condensation Process,” Angewandte Chemie (International ed. in English) 46, no. 15 (2007): 2598–2601. doi:10.1002/anie.200700071.
  • D. Azarifar, M. Pirhayati, B. Maleki, M. Sanginabadi, and R. T. Yami, “Acetic Acid-Promoted Condensation of o-Phenylenediamine with Aldehydes into 2-Aryl-1-(Arylmethyl)-1H-Benzimidazoles under Microwave Irradiation,” Journal of the Serbian Chemical Society 75, no. 9 (2010): 1181–1189. doi:10.2298/JSC090901096A.
  • J. Wan, S. Gan, J. Wu, and Y. Pan, “Water Mediated Chemoselective Synthesis of 1,2-Disubstituted Benzimidazoles Using o-Phenylenediamine and the Extended Synthesis of Quinoxalines,” Green Chemistry 11, no. 10 (2009): 1633–1637. doi:10.1039/b914286j.
  • C. Mukhopadhyay, A. Datta, R. J. Butcher, B. K. Paul, N. Guchhait, and R. Singha, “Water Mediated Expeditious and Highly Selective Synthesis of 2-Aryl-1-Arylmethyl-1H-Benzimidazoles by Dowex 50W: fluorescence Properties of Some Representative Compounds,” Arkivoc 2009, no. 13 (2009): 1–22. doi:10.3998/ark.5550190.0010.d01.
  • G. A. N. K. Durgareddy, R. Ravikumar, S. Ravi, and S. R. Adapa, “A Cu (NO3)23H2O Catalysed Facile Synthesis of Substituted 4(3H)-Quinazolinones and Benzimidazoles,” Journal of Chemical Sciences 125, no. 1 (2013): 175–182. doi:10.1007/s12039-012-0343-0.
  • A. Kumar, and K. K. Kapoor, “Antimony Chloride Immobilized on Neutral Alumina: An Efficient Catalyst for the Solvent-Free Selective Synthesis of 1,2-Disubstituted Benzimidazoles,” Journal of Chemical and Pharmaceutical Research 3 (2011): 369–374.
  • H. Sharghi, O. Asemani, and R. Khalifeh, “New One‐Pot Procedure for the Synthesis of 2‐Substituted Benzimidazoles,” Synthetic Communications 38, no. 7 (2008): 1128–1136. doi:10.1080/00397910701863657.
  • S. I. Alaqeel, “Synthetic Approaches to Benzimidazoles from o-Phenylenediamine: A Literature Review,” Journal of Saudi Chemical Society 21, no. 2 (2017): 229–237. doi:10.1016/j.jscs.2016.08.001.
  • S. Sajjadifar, S. A. Mirshokraie, N. Javaherneshan, and O. Louie, “SBSA as a New and Efficient Catalyst for the One-Pot Green Synthesis of Benzimidazole Derivatives at Room Temperature,” American Journal of Organic Chemistry 2, no. 2 (2012): 1–6. doi:10.5923/j.ajoc.20120202.01.
  • M. Burits, and F. Bucar, “Antioxidant Activity of Nigella Sativa Essential Oil,” Phytotherapy Research 14, no. 5 (2000): 323–328. doi:10.1002/1099-1573(200008)14:5<323::AID-PTR621>3.0.CO;2-Q.
  • S. B. Nimse, and D. Pal, “Free Radicals, Natural Antioxidants, and Their Reaction Mechanisms,” RSC Advances 5, no. 35 (2015): 27986–28006. doi:10.1039/C4RA13315C.
  • R. A. Friesner, R. B. Murphy, M. P. Repasky, L. L. Frye, J. R. Greenwood, T. A. Halgren, P. C. Sanschagrin, and D. T. Mainz, “Extra Precision Glide: docking and Scoring Incorporating a Model of Hydrophobic Enclosure for Protein-Ligand Complexes,” Journal of Medicinal Chemistry 49, no. 21 (2006): 6177–6196. doi:10.1021/jm051256o.
  • X. He, A. Alianc, R. Paul, and O. de Montellano, “Inhibition of the Mycobacterium tuberculosis Enoyl Acyl Carrier Protein Reductase InhA by Arylamides,” Bioorganic & Medicinal Chemistry 15, no. 21 (2007): 6649–6658. doi:10.1016/j.bmc.2007.08.013.
  • T. R. Deshmukh, V. M. Khedkar, R. G. Jadhav, A. P. Sarkate, J. N. Sangshetti, S. V. Tiwari, and B. B. Shingate, “A Copper-Catalyzed Synthesis of Aryloxy-Tethered Symmetrical 1,2,3 Triazoles as Potential Antifungal Agents Targeting 14 a-Demethylase,” New Journal of Chemistry 45, no. 29 (2021): 13104–13118. doi:10.1039/D1NJ01759D.
  • L. Z. Benet, C. M. Hosey, O. Ursu, and T. I. Oprea, “BDDCS, the Rule of 5 and Drugability,” Advanced Drug Delivery Reviews 101 (2016): 89–98. doi:10.1016/j.addr.2016.05.007.
  • “Molinspiration Chemoinformatics Brastislava, Slovak Republic.” http://wwwmolinspirationcom/cgi-bin/properties2014
  • “Drug-Likeness and Molecular Property Prediction.” http://wwwmolsoftcom/mprop
  • V. Chaturvedi, N. Dwivedi, P. R. Tripathi, and S. Sinha, “Evaluation of Mycobacterium smegmatis as a Possible Surrogate Screen for Selecting Molecules Active against Multi-Drug Resistant Mycobacterium tuberculosis,” The Journal of General and Applied Microbiology 53, no. 6 (2007): 333–337. doi:10.2323/jgam.53.333.
  • R. D. Kamble, S. V. Hese, R. J. Meshram, J. R. Kote, R. N. Gacche, and B. S. Dawane, “Green Synthesis and in Silico Investigation of Dihydro-2H-Benzo [1,3]Oxazine Derivatives as Inhibitors of Mycobacterium tuberculosis,” Medicinal Chemistry Research 24, no. 3 (2015): 1077–1088. doi:10.1007/s00044-014-1165-z.
  • V. Katawera, M. Siedner, and Y. Boum Ii, “Evaluation of the Modified Colorimetric Resazurin Microtiter Plate-Based Antibacterial Assay for Rapid and Reliable Tuberculosis Drug Susceptibility Testing,” BMC Microbiology 14, no. 1 (2014): 1–4. doi:10.1186/s12866-014-0259-6.
  • K. Mlisana, P. Jaglal, and M. Pillay, “Resazurin Microtitre Plate Assay and Sensititre MycoTB for Detection of Mycobacterium tuberculosis Resistance in a High Tuberculosis Resistance Setting,” African Journal of Laboratory Medicine 8, no. 1 (2019): 1–9. doi:10.4102/ajlm.v8i1.840.
  • R. A. Khalifa, M. S. Nasser, A. A. Gomaa, N. M. Osman, and H. M. Salem, “Resazurin Microtiter Assay Plate Method for Detection of Susceptibility of Multidrug Resistant Mycobacterium tuberculosis to Second-Line anti-Tuberculous Drugs,” Egyptian Journal of Chest Diseases and Tuberculosis 62, no. 2 (2013): 241–247. doi:10.1016/j.ejcdt.2013.05.008.
  • S. B. Rajput, R. B. Shinde, M. M. Routh, and S. M. Karuppayil, “Anti-Candida Properties of Asaronaldehyde of Acorus Gramineus Rhizome and Three Structural Isomers,” Chinese Medicine 8, no. 1 (2013): 18–8. doi:10.1186/1749-8546-8-18.
  • A. Ahmad, A. Khan, N. Manzoor, and L. A. Khan, “Evolution of Ergosterol Biosynthesis Inhibitors as Fungicidal against Candida,” Microbial Pathogenesis 48, no. 1 (2010): 35–41. doi:10.1016/j.micpath.2009.10.001.
  • I. Gulcin, “Antioxidant Properties of Resveratrol: A Structure Activity Insight,” Innovative Food Science and Emerging Technologies 11 (2010): 210–218.
  • M. P. de Torre, R. Y. Cavero, M. I. Calvo, and J. L. Vizmanos, “A Simple and a Reliable Method to Quantify Antioxidant Activity in Vivo,” Antioxidants 8, no. 5 (2019): 142. doi:10.3390/antiox8050142.
  • M. M. Rahman, M. B. Islam, M. Biswas, and A. K. Alam, “In Vitro Antioxidant and Free Radical Scavenging Activity of Different Parts of Tabebuia Pallida Growing in Bangladesh,” BMC Research Notes 8, no. 1 (2015): 1–9. doi:10.1186/s13104-015-1618-6.
  • K. Lalhminghlui, and G. C. Jagetia, “Evaluation of the Free-Radical Scavenging and Antioxidant Activities of Chilauni, Schima Wallichii Korth in Vitro,” Future Science OA 4, no. 2 (2018): FSO272. doi:10.4155/fsoa-2017-0086.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.