294
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A DFT Study on Diels-Alder Reaction of Dibenzazepine and 2,5-Dimethylfuran Using Different Solvents and Temperature Conditions

, , ORCID Icon, , & ORCID Icon
Pages 2908-2919 | Received 30 Nov 2021, Accepted 17 Mar 2022, Published online: 31 Mar 2022

References

  • D. Carmona, M. Pilar Lamata, and L. A. Oro, “Recent Advances in Homogeneous Enantioselective Diels-Alder Reactions Catalyzed by Chiral Transition-Metal Complexes,” Coordination Chemistry Reviews. 200-202 (2000): 717–72. doi:10.1016/S0010-8545(00)00355-6.
  • K. I. Takao, R. Munakata, and K. I. Tadano, “Recent Advances in Natural Product Synthesis by Using Intramolecular Diels-Alder Reactions,” Chemical Reviews 105, no. 12 (2005): 4779–807. doi:10.1021/cr040632u.
  • X. Jiang, and R. Wang, “Recent Developments in Catalytic Asymmetric Inverse-Electron-Demand Diels-Alder Reaction,” Chemical Reviews 113, no. 7 (2013): 5515–46. doi:10.1021/cr300436a.
  • R. Gara, M. O. Zouaghi, L. M. H. ALshandoudi, and Y. Arfaoui, “DFT Investigation of Solvent, Substituent, and Catalysis Effects on the Intramolecular Diels-Alder Reaction,” Journal of Molecular Modeling. 27, no. 5 (2021): 1–12. doi:10.1007/s00894-021-04729-w.
  • A. C. Knall, and C. Slugovc, “Inverse Electron Demand Diels-Alder (IEDDA)-Initiated Conjugation: a (High) Potential Click Chemistry Scheme,” Chemical Society Reviews 42, no. 12 (2013): 5131–42. doi:10.1039/c3cs60049a.
  • G. M. Ho, C. J. Huang, E. Y. T. Li, S. K. Hsu, T. Wu, M. M. L. Zulueta, K. B. Wu, and S. C. Hung, “Unconventional Exo Selectivity in Thermal Normal-Electron-Demand Diels-Alder Reactions,” Scientific Reports 6 (2016): 35147–10. 10.1038/srep35147.
  • W. Liao, and Z. X. Yu, “DFT Study of the Mechanism and Stereochemistry of the Rh(I)-Catalyzed Diels-Alder Reactions between Electronically Neutral Dienes and Dienophiles,” The Journal of Organic Chemistry 79, no. 24 (2014): 11949–60. doi:10.1021/jo5017844.
  • B. Talbi, P. Haquette, A. Martel, F. De Montigny, C. Fosse, S. Cordier, T. Roisnel, G. Jaouen, and M. Salmain, “(Eta6-arene) ruthenium(II) complexes and metallo-papain hybrid as Lewis acid catalysts of Diels-Alder reaction in water,” Dalton Transactions (Cambridge, England: 2003) 39, no. 24 (2010): 5605–7. doi:10.1039/c001630f.
  • K. C. Nicolaou, S. A. Snyder, T. Montagnon, and G. Vassilikogiannakis, “The Diels-Alder Reaction in Total Synthesis,” Angewandte Chemie International Edition 41, no. 10 (2002): 1668–98. doi:10.1002/1521-3773(20020517)41:10 < 1668::AID-ANIE1668 > 3.0.CO;2-Z.
  • O. YepesDonoso-Tauda, P. Pérez, J. S. Murray, P. Politzer, and P. D. Jaque, “The Reaction Force Constant as an Indicator of Synchronicity/Nonsynchronicity in [4 + 2] Cycloaddition Processes,” Physical Chemistry Chemical Physics 15, no. 19 (2013): 7311–20. doi:10.1039/c3cp44197k.
  • P. J. Donoghue, and O. Wiest, “Structure and Reactivity of Radical Ions: new Twists on Old Concepts,” Chemistry (Weinheim an der Bergstrasse, Germany) 12, no. 27 (2006): 7018–26. doi:10.1002/chem.200600554.
  • L. R. Domingo, and J. A. Sáez, “Understanding the Mechanism of Polar Diels-Alder Reactions,” Organic & Biomolecular Chemistry 7, no. 17 (2009): 3576–83. doi:10.1039/b909611f.
  • P. P. Chen, J. I. Seeman, and K. N. Houk, “Rolf Huisgen's Classic Studies of Cyclic Triene Diels-Alder Reactions Elaborated by Modern Computational Analysis,” Angewandte Chemie (International ed. in English) 59, no. 30 (2020): 12506–19. doi:10.1002/anie.202003279.
  • P. Vermeeren, T. A. Hamlin, and F. M. Bickelhaupt, “Origin of Asynchronicity in Diels-Alder Reactions,” Physical Chemistry Chemical Physics : PCCP 23, no. 36 (2021): 20095–106. doi:10.1039/d1cp02456f.
  • P. N. Aswany, A. Suresh, G. Vijayakumar, and R. Thomas, “Substituent Effects on Simple Diels-Alder Reactions: evidence for Possible Explosive Reactions from Quantum Mechanical Calculations,” International Journal of Current Pharmaceutical Research 3, no. 5 (2016): 40–7.
  • M. A. Sultan, and U. Karama, “Substituent Effects on Regioselectivity of the Diels-Alder Reactions: reactions of 10-Allyl-1,8-Dichloroanthracene with 2-Chloroacrylonitrile, 1-Cyanovinyl Acetate and Phenyl Vinyl Sulfone,” Journal of Chemistry 2016, (2016): 3943060. doi:10.1155/2016/3943060.
  • L. G. Zhuo, W. Liao, and Z. X. Yu, “A Frontier Molecular Orbital Theory Approach to Understanding the Mayr Equation and to Quantifying Nucleophilicity and Electrophilicity by Using HOMO and LUMO Energies,” Asian Journal of Organic Chemistry 1, no. 4 (2012): 336–45. doi:10.1002/ajoc.201200103.
  • M. A. Sultan, U. Karama, A. I. Almansour, and S. M. Soliman, “Theoretical Study on Regioselectivity of the Diels-Alder Reaction between 1,8-Dichloroanthracene and Acrolein,” Molecules 21, no. 10 (2016): 1277. doi:10.3390/molecules21101277.
  • P. V. Alston, R. M. Ottenbrite, O. F. Guner, and D. D. Shillady, “A Transition State FMO Approach for Prediction of the Regioselectivity of the Diels-Alder Reaction,” Tetrahedron 42, no. 16 (1986): 4403–8. doi:10.1016/S0040-4020(01)87278-1.
  • R. Y. Rohling, I. C. Tranca, E. J. M. Hensen, and E. A. Pidko, “Electronic Structure Analysis of the Diels-Alder Cycloaddition Catalyzed by Alkali-Exchanged Faujasites,” The Journal of Physical Chemistry C, Nanomaterials and Interfaces 122, no. 26 (2018): 14733–43. doi:10.1021/acs.jpcc.8b04409.
  • B. Yang, Z. C. Zhu, H. V. Goodson, and M. J. Miller, “Syntheses and Biological Evaluation of Ring-c Modified Colchicine Analogs,” Bioorganic & Medicinal Chemistry Letters 20, no. 12 (2010): 3831–3. doi:10.1016/j.bmcl.2010.03.056.
  • T. Wang, L. D. Du, D. J. Wan, X. Li, X. Z. Chen, and G. F. Wu, “Use of Lipase Catalytic Resolution in the Preparation of Ethyl (2 s,5 r)-5-((Benzyloxy)Amino)Piperidine-2-Carboxylate, a Key Intermediate of the β-Lactamase Inhibitor Avibactam,” Organic Process Research & Development 22, no. 12 (2018): 1738–44. doi:10.1021/acs.oprd.8b00173.
  • J. A. Funel, and S. Abele, “Industrial Applications of the Diels-Alder Reaction,” Angewandte Chemie (International ed. in English) 52, no. 14 (2013): 3822–63. doi:10.1002/anie.201201636.
  • S. Carosso, and M. J. Miller, “Nitroso Diels-Alder (NDA) Reaction as an Efficient Tool for the Functionalization of Diene-Containing Natural Products,” Organic & Biomolecular Chemistry 12, no. 38 (2014): 7445–68. doi:10.1039/c4ob01033g.
  • B. Sullivan, I. Carrera, M. Drouin, and T. Hudlicky, “Symmetry-Based Design for the Chemoenzymatic Synthesis of Oseltamivir (Tamiflu) from Ethyl Benzoate,” Angewandte Chemie (International ed. in English) 48, no. 23 (2009): 4229–31. doi:10.1002/anie.200901345.
  • B. Yang, P. A. Miller, U. Möllmann, and M. J. Miller, “Syntheses and Biological Activity Studies of Novel Sterol Analogs from Nitroso Diels-Alder Reactions of Ergosterol,” Organic Letters 11, no. 13 (2009): 2828–31. doi:10.1021/ol900997t.
  • S. Kumari, D. Kishore, S. Paliwal, R. Chauhan, J. Dwivedi, and A. Mishra, “Transition Metal-Free One-Pot Synthesis of Nitrogen-Containing Heterocycles,” Molecular Diversity 20, no. 1 (2016): 185–232. doi:10.1007/s11030-015-9596-0.
  • P. A. Datar, “Quantitative Bioanalytical and Analytical Method Development of Dibenzazepine Derivative, Carbamazepine: A Review,” Journal of Pharmaceutical Analysis 5, no. 4 (2015): 213–22. doi:10.1016/j.jpha.2015.02.005.
  • L. Watkins, M. O. Dwyer, K. Oak, C. Lawthom, M. Maguire, R. Thomas, and R. Shankar, “The Evidence for Switching Dibenzazepines in People with Epilepsy,” Acta Neurologica Scandinavica 142, no. 2 (2020): 121–30. doi:10.1111/ane.13248.
  • C. Lawthom, J. Peltola, R. Mcmurray, E. Dodd, and V. Villanueva, “Dibenzazepine Agents in Epilepsy: How Does Eslicarbazepine Acetate Differ?,” Neurology and Therapy 7, no. 2 (2018): 195–206. doi:10.1007/s40120-018-0111-2.
  • J. Gierbolini, M. Giarratano, and S. R. Benbadis, “Carbamazepine-Related Antiepileptic Drugs for the Treatment of Epilepsy - a Comparative Review,” Expert Opinion on Pharmacotherapy 17, no. 7 (2016): 885–8. doi:10.1517/14656566.2016.1168399.
  • A. Lajeunesse, and C. Gagnon, “Determination of Acidic Pharmaceutical Products and Carbamazepine in Roughly Primary-Treated Wastewater by Solid-Phase Extraction and Gas Chromatography-Tandem Mass Spectrometry,” International Journal of Environmental and Analytical Chemistry 87, no. 8 (2007): 565–78. doi:10.1080/03067310701189083.
  • S. Mukherjee, B. Mukherjee, R. Mukhopadhyay, K. Naskar, S. Sundar, J. C. Dujardin, A. K. Das, and S. Roy, “Imipramine is an Orally Active Drug against Both Antimony Sensitive and Resistant leishmania donovani Clinical Isolates in Experimental Infection,” PLoS Neglected Tropical Diseases 6, no. 12 (2012): e1987. doi:10.1371/journal.pntd.0001987.
  • T. Aree, “Supramolecular Complexes of β-Cyclodextrin with Clomipramine and Doxepin: effect of the Ring Substituent and Component of Drugs on Their Inclusion Topologies and Structural Flexibilities,” Pharmaceuticals 13, no. 10 (2020): 278. doi:10.3390/ph13100278.
  • M. Rufo-Campos, C. Casas-Fernández, and A. Martínez-Bermejo, “Long-Term Use of Oxcarbazepine Oral Suspension in Childhood Epilepsy: open-Label Study,” Journal of Child Neurology 21, no. 6 (2006): 480–5. 10.2310/7010.2006.00120.
  • V. K. Yadav, D. L. V. K. Prasad, A. Yadav, and K. Yadav, “On the Solvent- and Temperature-Driven Stereoselectivity of the Diels-Alder Cycloaddition Reactions of Furan with Maleic Anhydride and Maleimide,” Journal of Physical Organic Chemistry 34, no. 2 (2021): e4131 . doi:10.1002/poc.4131.
  • J. C. de Oliveira, M.-P. Laborie, and V. R, “Thermodynamic and Kinetic Study of Diels-Alder Reaction,” Molecules 25, no. 2 (2020): 243. doi:10.3390/molecules25020243.
  • C. N. Rowley, T. K. Woo, and N. J. Mosey, “A Computational Experiment of the Endo versus Exo Preference in a Diels-Alder Reaction,” Journal of Chemical Education 86, no. 2 (2009): 199–201. doi:10.1021/ed086p199.
  • R. Gordillo, and K. N. Houk, “Origins of Stereoselectivity in Diels-Alder Cycloadditions Catalyzed by Chiral Imidazolidinones,” Journal of the American Chemical Society 128, no. 11 (2006): 3543–53. doi:10.1021/ja0525859.
  • M. J. Frisch, G. W. Trucks, and H. B. Schlegel, Gaussian 16, Revision B.01 (Wallingford CT: Gaussian. Inc., 2016).
  • A. K. Zych, and P. Perez, “Perfluorobicyclo[2.2.0]Hex‑1(4)‑Ene as Unique Partner for Diels-Alder Reactions with Benzene: A Density Functional Theory Study,” Theoretical Chemistry Accounts 140, no. 17 (2021): 1–16. doi:10.1007/s00214-020-02709-6.
  • T. Venianakis, C. Oikonomaki, M. G. Siskos, A. Primikyri, and I. P. Gerothanassis, “DFT Calculations of 1H NMR Chemical Shifts of Geometric Isomers of Conjugated Linolenic Acids, Hexadecatrienyl Pheromones, and Model Triene-Containing Compounds: structures in Solution and Revision of NMR Assignments,” Molecules 26, no. 11 (2021): 3477. doi:10.3390/molecules26113477.
  • M. E. Castro, M. J. Percino, V. M. Chapela, M. Ceron, G. Soriano-Moro, J. Lopez-Cruz, and F. J. Melendez, “Theoretical and Experimental Spectroscopic Analysis of cyano-substituted styrylpyridine compounds,” International Journal of Molecular Sciences 14, no. 2 (2013): 4005–29. doi:10.3390/ijms14024005.
  • M. A. Iron, “Evaluation of the Factors Impacting the Accuracy of 13C NMR Chemical Shift Predictions Using Density Functional Theory-the Advantage of Long-Range Corrected Functionals,” Journal of Chemical Theory and Computation 13, no. 11 (2017): 5798–819. doi:10.1021/acs.jctc.7b00772.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.