134
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Ultrasonic Promoted Regioselective Reactions of the Novel Spiro 3,1-Benzoxazon-Isobenzofuranone Dye Toward Some Organic Base Reagents

, ORCID Icon, ORCID Icon, ORCID Icon &
Pages 2973-2989 | Received 07 Feb 2022, Accepted 20 Mar 2022, Published online: 07 Apr 2022

References

  • T. Opatz, J. Christoffers, and A. Baro, “Quaternary Stereocenters – Challenges and Solutions for Organic Synthesis,” Advanced Synthesis & Catalysis 348, no. 4-5 (2006): 593. doi:10.1002/adsc.200505462.
  • V. V. Zhdankin and P. J. Stang, “Chemistry of Polyvalent Iodine,” Chemical Reviews 108, no. 12 (2008): 5299–5358. doi:10.1021/cr800332c.
  • V. V. Zhdankin, Hypervalent Iodine Chemistry: Preparation, Structure, and Synthetic Applications of Polyvalent Iodine Compounds (Chichester: Wiley, 2013).
  • J. P. Brand, D. F. Gonzalez, S. Nicolai, and J. Waser, “Benziodoxole-Based Hypervalent Iodine Reagents for Atom-Transfer Reactions,” Chemical Communications (Cambridge, England) 47, no. 1 (2011): 102–115. doi:10.1039/c0cc02265a.
  • D.-Q. Dong, S.-H. Hao, Z.-L. Wang, and C. Chen, “Hypervalent Iodine: A Powerful Electrophile for Asymmetric α-Functionalization of Carbonyl Compounds,” Organic & Biomolecular Chemistry 12, no. 25 (2014): 4278–4289. doi:10.1039/c4ob00318g.
  • C. H. Oh, J. S. Kim, and H. H. Jung, “Highly Efficient Arylation of Malonates with Diaryliodonium Salts,” The Journal of Organic Chemistry 64, no. 4 (1999): 1338–1340. doi:10.1021/jo981065b.
  • P.-O. Norrby, T. B. Petersen, M. Bielawski, and B. Olofsson, “ Alpha-arylation by Rearrangement: on the Reaction of Enolates with Diaryliodonium Salts,” Chemistry (Weinheim an der Bergstrasse, Germany) 16, no. 28 (2010): 8251–8254. doi:10.1002/chem.201001110.
  • M. Ochiai, Y. Kitagawa, N. Takayama, Y. Takaoka, and M. Shiro, “Synthesis of Chiral Diaryliodonium Salts, 1,1′-Binaphthyl-2-yl(Phenyl)Iodonium Tetrafluoroborates: Asymmetric α-Phenylation of β-Keto Ester Enolates,” Journal of the American Chemical Society 121, no. 39 (1999): 9233–9234. doi:10.1021/ja992236c.
  • A. E. Allen and D. W. C. MacMillan, “Enantioselective α-Arylation of Aldehydes via the Productive Merger of Iodonium Salts and Organocatalysis,” Journal of the American Chemical Society 133, no. 12 (2011): 4260–4263. doi:10.1021/ja2008906.
  • A. Bigot, A. E. Williamson, and M. J. Gaunt, “Enantioselective α-Arylation of N-Acyloxazolidinones with Copper(II)-Bisoxazoline Catalysts and Diaryliodonium Salts,” Journal of the American Chemical Society 133, no. 35 (2011): 13778–13781. doi:10.1021/ja206047h.
  • J. S. Harvey, S. P. Simonovich, C. R. Jamison, and D. W. C. MacMillan, “Enantioselective α-Arylation of Carbonyls via Cu(I)-Bisoxazoline Catalysis,” Journal of the American Chemical Society 133, no. 35 (2011): 13782–13785. doi:10.1021/ja206050b.
  • S. Zhu and D. W. C. MacMillan, “Enantioselective Copper-Catalyzed Construction of Aryl Pyrroloindolines via an Arylation-Cyclization Cascade,” Journal of the American Chemical Society 134, no. 26 (2012): 10815–10818. doi:10.1021/ja305100g.
  • E. Skucas and D. W. C. MacMillan, “Enantioselective α-Vinylation of Aldehydes via the Synergistic Combination of Copper and Amine Catalysis,” Journal of the American Chemical Society 134, no. 22 (2012): 9090–9093. doi:10.1021/ja303116v.
  • D. F. Gonzalez, J. P. Brand, R. Mondiere, and J. Waser, “Ethynylbenziodoxolones (EBX) as Reagents for the Ethynylation of Stabilized Enolates,” Advanced Synthesis & Catalysis 355, no. 8 (2013): 1631–1639. doi:10.1002/adsc.201300266.
  • X. Wu, S. Shirakawa, and K. Maruoka, “Efficient Asymmetric Synthesis of Spiro-2(3H)-Furanones via Phase-Transfer-Catalyzed Alkynylation,” Organic & Biomolecular Chemistry 12, no. 29 (2014): 5388–5392. doi:10.1039/c4ob00969j.
  • M. Kamlar, P. Putaj, and J. Vesely, “Organocatalytic Alkynylation of Densely Functionalized Monofluorinated Derivatives: C(sp3)–C(sp) Coupling,” Tetrahedron Letters 54, no. 16 (2013): 2097–2100. doi:10.1016/j.tetlet.2013.02.023.
  • V. Matousek, A. Togni, V. Bizet, and D. Cahard, “Synthesis of α-CF3-Substituted Carbonyl Compounds with Relative and Absolute Stereocontrol Using Electrophilic CF3-Transfer Reagents,” Organic Letters 13, no. 21 (2011): 5762–5765. doi:10.1021/ol2023328.
  • Q.-H. Deng, H. Wadepohl, and L. H. Gade, “Highly Enantioselective Copper-Catalyzed Electrophilic Trifluoromethylation of β-Ketoesters,” Journal of the American Chemical Society 134, no. 26 (2012): 10769–10772. doi:10.1021/ja3039773.
  • S. K. Ramadan, A. K. El-Ziaty, and R. S. Ali, “Synthesis, Antiproliferative Activity, and Molecular Docking of Some N ‐Heterocycles Bearing a Pyrazole Scaffold against Liver and Breast Tumors,” Journal of Heterocyclic Chemistry 58, no. 1 (2021): 290–304. doi:10.1002/jhet.4168.
  • G. A. Elsayed, N. F. Mahmoud, and S. A. Rizk, “Solvent-free synthesis and antimicrobial properties of some novel furanone and spiropyrimidone derivatives,” Current Organic Synthesis 14 (2017): 1.
  • S. A. Rizk, S. S. Abdelwahab, and H. A. Sallam, “Regioselective Reactions, Spectroscopic Characterization, and Cytotoxic Evaluation of Spiro-pyrrolidine Thiophene,” Journal of Heterocyclic Chemistry 55, no. 7 (2018): 1604–1614. doi:10.1002/jhet.3195.
  • A. F. M. Fahmy, S. A. Rizk, M. M. Hemdan, A. A. El‐Sayed, and A. I. Hassaballah, “Efficient Green Synthesis and Computational Chemical Study of Some Interesting Heterocyclic Derivatives as Insecticidal Agents,” Journal of Heterocyclic Chemistry 55, no. 11 (2018): 2545–2555. doi:10.1002/jhet.3308.
  • S. A. Rizk, S. Shaban, and H. A. Sallam, “A Facile Synthesis and Antioxidant Evaluation of Conjugated 8‐Azacoumarins Based on DFT Parameters,” Journal of Heterocyclic Chemistry 57, no. 2 (2020): 867–879. doi:10.1002/jhet.3833.
  • M. G. El-Banna, M. A. El-Hashash, A. M. Elnaggar, A. A. El-Badawy, and S. A. Rizk, “An Efficient Ultrasonic Synthetic Approach, DFT Study, and Molecular Docking of 6a‐Hydroxy‐9‐Nitro‐6,6a‐Dihydro‐Isoindolo[2,1‐ a ] Quinazoline‐5,11‐Dione Derivatives as Algaecides for Refining Wastewater,” Journal of Heterocyclic Chemistry 58, no. 7 (2021): 1502–1514. doi:10.1002/jhet.4276.
  • (a) E.A.E. El-Helw, A.R.I. Morsy, and A.I. Hashem, “Evaluation of Some New Heterocycles Bearing 2‐Oxoquinolyl Moiety as Immunomodulator Against Highly Pathogenic Avian Influenza Virus (H5N8),” Journal of Heterocyclic Chemistry 58, no. 4 (2021): 1003–1014. (b) E.A.E. El-Helw and A.I. Hashem, “Synthesis and antitumor activity evaluation of some pyrrolone and pyridazinone heterocycles derived from 3-((2-oxo-5-(p-tolyl)furan-3(2H)-ylidene)methyl)quinolin-2(1H)-one,” Synthetic Communications 50, no. 7 (2020): 1046. doi:10.1002/jhet.4233.
  • (a) K.N.M. Halim, S.A. Rizk, M.A. El-Hashash, and S.K. Ramadan, “Straightforward Synthesis, Antiproliferative Screening, and Density Functional Theory Study of Some Pyrazolylpyrimidine Derivatives, Journal of Heterocyclic Chemistry 58, no. 2 (2021): 636–645. (b) S.K. Ramadan, K.N.M. Halim, S.A. Rizk, and M.A. El-Hashash, “Cytotoxic activity and density functional theory studies of some 1,3-diphenylpyrazolyltetrahydropyrimidine derivatives,” Journal of the Iranian Chemical Society, 17, no. 7 (2020): 1575. doi:10.1002/jhet.4204.
  • (a) S.K. Ramadan, A.K. El-Ziaty, and E.A.E. El-Helw, “Design, Synthesis and In Silico Studies of New Quinazolinone Derivatives as Antitumor PARP-1 Inhibitors,” RSC Advances 10, no. 49 (2020): 29475–29492. (b) S.K. Ramadan, E.Z. Elrazaz, K.A.M. Abouzid, and A.M. Elnaggar, “Design, synthesis and: In silico studies of new quinazolinone derivatives as antitumor PARP-1 inhibitors,” RSC Advances 10, no. 49 (2020): 29475. doi:10.1039/D0RA05943A.
  • (a) A.A. El-Badawy, A.S. Elgubbi, and E.A.E. El-Helw, “Acryloyl isothiocyanate skeleton as a precursor for synthesis of some novel pyrimidine, triazole, triazepine, thiadiazolopyrimidine and acylthiourea derivatives as antioxidant agents,” Journal of Sulfur Chemistry 42, no. 3 (2021): 295. (b) S.K. Ramadan, N.A. Ibrahim, S.A. El-Kaed, and E.A.E. El-Helw, "New potential fungicides pyrazole-based heterocycles derived from 2-cyano-3-(1,3-diphenyl-1H-pyrazol-4-yl) acryloyl isothiocyanate," Journal of Sulfur Chemistry 42, no. 5 (2021): 529. doi:10.1080/17415993.2021.1878170.
  • (a) M.M. Kaddah, A.A. Fahmi, M.M. Kamel, S.K. Ramadan, and S.A. Rizk, “Synthesis, characterization, computational chemical studies and antiproliferative activity of some heterocyclic systems derived from 3-(3-(1,3-diphenyl-1H-pyrazol-4-yl)acryloyl)-2H-chromen-2-one,” Synthetic Communications 51, no. 12 (2021): 1798. (b) M.M. Kaddah, A.R.I. Morsy, A.A. Fahmi, M.M. Elsafty, S.A. Rizk, and S.K. Ramadan, “Synthesis and biological activity on IBD virus of diverse heterocyclic systems derived from 2-cyano-N'-((2-oxo-1,2-dihydroquinolin-3-yl)methylene)acetohydrazide,” Synthetic Communications 51, no. 22 (2021): 3366.
  • H. A. Sallam, A. S. Elgubbi, and E. A. E. El-Helw, “Synthesis and Antioxidant Screening of New 2-Cyano-3-(1,3-Diphenyl-1 H -Pyrazol-4-yl)Acryloyl Amide Derivatives and Some Pyrazole-Based Heterocycles,” Synthetic Communications 50, no. 13 (2020): 2066–2077. doi:10.1080/00397911.2020.1765258.
  • A. M. Abdelrahman, A. A. Fahmi, S. A. Rizk, and E. A. E. El-Helw, Polycyclic Aromatic Compounds (2021) (in press). doi:10.1080/10406638.2021.2020310.
  • (a) E.A. Ghareeb, N.F.H. Mahmoud, E.A. El-Bordany, and E.A.E. El-Helw, “Synthesis, DFT, and eco-friendly insecticidal activity of some N-heterocycles derived from 4-((2-oxo-1,2-dihydroquinolin-3-yl)methylene)-2-phenyloxazol-5(4H)-one,” Bioorganic Chemistry, 112, (2021): 104945. (b) A.M. Elnaggar, and S.K. Ramadan, “Efficient synthesis of some pyrimidine and thiazolidine derivatives bearing quinoline scaffold under microwave irradiation,” Synthetic Communications, 50, no. 14 (2020): 2188.
  • M. A. El-Hashash, K. M. Darwish, S. A. Rizk, and F. A. El-Bassiouny, “The Reactivity of 2-Ethoxy-4-Chloroquinazoline and Its Use in Synthesis of Novel Quinazoline Derivatives,” Organic Chemistry International 2011 (2011): 1–7. doi:10.1155/2011/295491.
  • A. E. Elkholy, S. A. Rizk, and A. M. Rashad, “Enhancing Lubricating Oil Properties Using Novel Quinazolinone Derivatives: DFT Study and Molecular Dynamics Simulation,” Journal of Molecular Structure 1175 (2019): 788–796. doi:10.1016/j.molstruc.2018.08.045.
  • S. A. Rizk, M. A. El‐Hashash, and A. A. El‐Badawy, “Ultrasonic and Grinding Aptitudes of One‐Pot Synthesis of 5‐(4‐Chlorophenyl)‐7‐(3,4‐Dimethyl Phenyl)‐2‐Oxo‐2H‐Pyrano[2,3‐b]Pyridine Derivatives as Antibacterial Agents,” Journal of Heterocyclic Chemistry 54, no. 3 (2017): 2003–2011. doi:10.1002/jhet.2758.
  • S. Attia, A. El-Gendy, and S. A. Rizk, “Efficient Green Synthesis of Antioxidant Azacoumarin Dye Bearing Spiro-Pyrrolidine for Enhancing Electro-Optical Properties of Perovskite Solar Cells,” Journal of Molecular Structure 1184 (2019): 583–592. doi:10.1016/j.molstruc.2019.02.042.
  • A. T. El-Gendy, A. Youssef, and S. A. Rizk, “Which Energetically Favorable Sustainable Synthesis of 4-Amino-8-Azacoumarin Ester or 4-Hydroxy-3-Cyano Derivative Based on New Exact Kinetic Arrhenius and DFT Stimulation,” Journal of the Iranian Chemical Society 17, no. 5 (2020): 1001–1011. doi:10.1007/s13738-019-01838-5.
  • F. D. Gonzalez, F. Benfatti, and J. Waser, “Asymmetric Organocatalysis Meets Hypervalent Iodine Chemistry for the α-Functionalization of Carbonyl Compounds,” ChemCatChem 4, no. 7 (2012): 955–958. doi:10.1002/cctc.201200116.
  • Veronica Huber, Chiara Camisaschi, Angela Berzi, Simona Ferro, Luana Lugini, Tiziana Triulzi, Alessandra Tuccitto, Elda Tagliabue, Chiara Castelli, and Licia Rivoltini, “Cancer Acidity: An Ultimate Frontier of Tumor Immune Escape and a Novel Target of Immunomodulation,” Seminars in Cancer Biology 43 (2017): 74–89. doi:10.1016/j.semcancer.2017.03.001.
  • P. Skehan, R. Storeng, D. Scudiero, A. Monks, J. McMahon, D. Vistica, J. T. Warren, H. Bokesch, S. Kenney, and M. R. Boyd, “New Colorimetric Cytotoxicity Assay for Anticancer-Drug Screening,” Journal of the National Cancer Institute 82, no. 13 (1990): 1107–1112. doi:10.1093/jnci/82.13.1107.
  • S. Ponnala, D. P. Sahu, R. Kumar, and P. R. Maulik, “One Pot Synthesis of Novel Dispiro[Oxindole-Thiazolidinedione/Thioxo-Thiazolidinone/Dihydro Pyrazolone]-Pyrrolidines via 1,3-Dipolar Cycloaddition Reaction of Azomethine Ylides,” Journal of Heterocyclic Chemistry 43, no. 6 (2006): 1635–1640. doi:10.1002/jhet.5570430631.
  • A. A. Shvets, and S. V. Kurbatov, “Diastereoselective Synthesis of Bisspiroconjugated Oxindoles by [3 + 2] Dipolar Cycloaddition,” Chemistry of Heterocyclic Compounds 45, no. 7 (2009): 866–867. doi:10.1007/s10593-009-0344-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.