77
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis, Characterization of CoFe2O4 and CoAl0.8Fe2O4: A Novel Catalyst for the Synthesis of 12-Aryl/Hetroaryl-8,9,10,12-Tetrahydrobenzo[a]Xanthen-11-Ones Derivatives in Semi-Aqueous Condition

, ORCID Icon &
Pages 3522-3534 | Received 02 Mar 2022, Accepted 23 Apr 2022, Published online: 06 May 2022

References

  • A. A. Yelwande, M. E. Navgire, D. T. Tayde, B. R. Arbad, and M. K. Lande, “SnO2/SiO2 Nanocomposite Catalyzed One-Pot, Four-Component Synthesis of 2-Amino-3-Cyanopyridines,” South African Journal of Chemistry 65 (2012): 131–37.
  • A. Sobczyński and A. Dobosz, “Water Purification by Photocatalysis on Semiconductors,” Polish Journal of Environmental Studies 10 (2001): 195–205.
  • N. Sanpo, C. Wen, C. C. Berndt, and J. Wang, New Approaches to the Study of Spinel Ferrite Nanoparticles for Biomedical Applications (Cham: Springer International Publishing, 2015).
  • J. Chen, Y. Li, Z. Li, and X. Zhang, “Production of COx-Free Hydrogen and Nanocarbon by Direct Decomposition of Undiluted Methane on Ni–Cu–Alumina Catalysts, Production of COx-Free Hydrogen and Nanocarbon by Direct Decomposition of Undiluted Methane on Ni–Cu–Alumina Catalysts,” Applied Catalysis A: General 269, no. 1–2 (2004): 179–86. doi:10.1016/j.apcata.2004.04.016.
  • H. F. Abbas and W. M. A. Wan Daud, “Hydrogen Production by Methane Decomposition: review,” International Journal of Hydrogen Energy 35, no. 3 (2010): 1160–90. doi:10.1016/j.ijhydene.2009.11.036.
  • S. Maghsoodi, A. Khodadadi, and Y. Mortazavi, “A Novel Continuous Process for Synthesis of Carbon Nanotubes Using Iron Floating Catalyst and MgO Particles for CVD of Methane in a Fluidized Bed Reactor,” Applied Surface Science 256, no. 9 (2010): 2769–74. doi:10.1016/j.apsusc.2009.11.026.
  • L. Shi, B. Duan, Z. Zhu, C. Sun, J. Zhou, and A. Walsh, “Preparing Copper Catalyst by Ultrasound-Assisted Chemical Precipitation Method,” Ultrasonics Sonochemistry 64 (2020): 105013. doi:10.1016/j.ultsonch.2020.105013.
  • Y. Izumi, R. Hasebe, and K. Urabe, “Catalysis by Heterogeneous Supported Heteropoly Acid,” Journal of Catalysis 84, no. 2 (1983): 402–09. doi:10.1016/0021-9517(83)90011-8.
  • A. K. Singh, M. G. H. Zaidi, R. Saxena, R. Suman, P. Maheshwari, H. P. Gangwar, K. S. Rawat, and A. Verma, “Effect of surface treatment on tribological characteristic of ferrite nanoparticles epoxy composites,” IOP Conference Series: Materials Science and Engineering 802 (2020): 012007. doi:10.1088/1757-899X/802/1/012007.
  • F. A. Harraz, R. M. Mohamed, M. M. Rashad, Y. C. Wang, and W. Sigmund, “Magnetic Nanocomposite Based on Titania–Silica/Cobalt Ferrite for Photocatalytic Degradation of Methylene Blue Dye,” Ceramics International 40, no. 1 (2014): 375–84. doi:10.1016/j.ceramint.2013.06.012.
  • L. Cuiping, W. Haodi, L. Shijia, L. Chen, C. Binbin, and Y. Qishe, “Preparation of Magnetic Co0.5Zn0.5Fe2O4/AgBr Hybrids for the Visible-Light-Driven Degradation of Methyl Orange,” Materials Science in Semiconductor Processing 73 (2018): 67–71. doi:10.1016/j.mssp.2017.07.003.
  • B. I. Kharisov, H. R. Dias, and O. V. Kharissova, “Mini-Review: Ferrite Nanoparticles in the Catalysis,” Arabian Journal of Chemistry 12, no. 7 (2019): 1234–46. doi:10.1016/j.arabjc.2014.10.049.
  • G. Chouhan, D. Wang, and H. Alper, “Magnetic Nanoparticle-Supported Proline as a Recyclable and Recoverable Ligand for the CuI Catalyzed Arylation of Nitrogen Nucleophiles,” Chemical Communications 45, no. 45 (2007): 4809–11. doi:10.1039/b711298j.
  • M. Faraji, Y. Yamini, and M. Rezaee, “Magnetic Nanoparticles: Synthesis, Stabilization, Functionalization, Characterization and Applications,” Journal of the Iranian Chemical Society 7, no. 1 (2010): 1–37. doi:10.1007/BF03245856.
  • M. Kazemi, M. Ghobadi, and A. Mirzaie, “Based on Cobalt Ferrite Nanoparticles (CoFe2O4 MNPs) as Catalyst and Support: Magnetically Recoverable Nano-Catalysts in Organic Synthesis,” Nanotechnology Reviews 7 (2018): 43–68.
  • G. Kaur, P. Devi, Sl. Thakur, A. Kumar, R. Chandel, and B. Banerjee, “Magnetically Separable Transition Metal Ferrites: Versatile Heterogeneous Nano-Catalysts for the Synthesis of Diverse Bioactive Heterocycles,” ChemistrySelect 4, no. 7 (2019): 2181–90. doi:10.1002/slct.201803600.
  • R. Ahmadi, M. Imani, and A. Tadjarodi, “Microwave Assisted Synthesis of CoFe2O4 Nanoparticles by Utilizing Organic Promoters and Evaluation of Its Properties,” Chemistry Proceedings 3 (2021): 52.
  • I. H. Gul and A. Maqsood, “Structural, Magnetic and Electric Properties of Cobalt Ferrites Prepared by Sol-Gel Route,” Journal of Alloys and Compounds 465, no. 1–2 (2008): 227–31. doi:10.1016/j.jallcom.2007.11.006.
  • R. I. Setiyani, Utari, and B. Purnama, “Effect of Annealing Temperature on XRD and FTIR Analysis on CoAl0.1 Fe1.9NO4 Nanoparticles by Coprecipitation,” AIP Conference Proceedings 2296 (2020), 020051.
  • J. Safaei-Ghomi and M. Ali Ghasemzadeh, “A Simple and Efficient Synthesis of 12-Aryl-8,9,10,12-Tetrahydrobenzo[a]Xanthen-11-Ones by ZnO Nanoparticles Catalyzed Three Component Coupling Reaction of Aldehydes, 2-Naphthol and Dimedone,” South African Journal of Chemistry 67 (2014): 27–32.
  • V. Peres, T. J. Nagem, and F. F. de Oliveira, “Tetraoxygenated Naturally Occurring Xanthones,” Phytochemistry 55, no. 7 (2000): 683–710. doi:10.1016/S0031-9422(00)00303-4.
  • A. Kumar, S. Sharma, R. A. Maurya, and J. Sarkar, “Diversity Oriented Synthesis of Benzoxanthene and Benzochromene Libraries via One-Pot, Three-Component Reactions and Their Anti-Proliferative Activity,” Journal of Combinatorial Chemistry 12, no. 1 (2010): 20–24. doi:10.1021/cc900143h.
  • S. M. Menchen, S. C. Benson, J. Y. L. Lam, W. Zhen, D. Sun, B. B. Rosenblum, S. H. Khan, and M. Taing, “Sulfonated Diarylrhodamine Dyes” (US Patent 6,583,168, 2003). Chemical Abstracts 39 (2003): 54287f.
  • B. Lesch and S. Bräse, “A Short, Atom-Economical Entry to Tetrahydroxanthenones,” Angewandte Chemie (International Edition in English) 43, no. 1 (2004): 115–18. doi:10.1002/anie.200352154.
  • Y. L. Shi and M. Shi, “Reaction of Salicyl N-Tosylimines with 2-Cyclohexenone: A Facile Access to Tetrahydroxanthenones,” Synlett 17, no. 17 (2005): 2623–26. doi:10.1055/s-2005-917109.
  • J. M. Khurana, A. Lumb, A. Pandey, and D. Magoo, “Green Approaches for the Synthesis of 12-Aryl-8,9,10,12-Tetrahydrobenzo[a]Xanthen-11-Ones in Aqueous Media and under Microwave Irradiation in Solvent Less Conditions,” Synthetic Communications 42, no. 12 (2012): 1796–803. doi:10.1080/00397911.2010.544832.
  • G. C. Nandi, S. Samai, R. Kumar, and M. S. Singh, “An Efficient One-Pot Synthesis of Tetrahydrobenzo[a]Xanthene-11-Oneanddiazabenzo[a]Anthracene-9,11-Dione Derivatives under Solvent-Free Condition,” Tetrahedron 65, no. 34 (2009): 7129–34. doi:10.1016/j.tet.2009.06.024.
  • P. V. Shinde, A. H. Kategaonkar, B. B. Shingate, and M. S. Shingare, “Surfactant Catalyzed Convenient and Greener Synthesis of Tetrahydrobenzo[a]Xanthene-11-Ones at Ambient Temperature,” Beilstein Journal of Organic Chemistry 7 (2011): 53–58. doi:10.3762/bjoc.7.9.
  • L.-P. Mo and H.-L. Chen, “One-Pot, Three-Component Condensation of Aldehydes, 2-Naphthol and 1,3-Dicarbonyl Compounds,” Journal of the Chinese Chemical Society 57, no. 2 (2010): 157–61. doi:10.1002/jccs.201000025.
  • X. J. Sun, J. F. Zhou, and P. S. Zhao, “Molecular Iodine-Catalyzed One-Pot Synthesis of Tetrahydrobenzo[a]Xanthene-11-One and Diazabenzo[a]Anthracene-9,11-Dione Derivatives Synth,” Synthetic Communications 42, no. 10 (2012): 1542–49. doi:10.1080/00397911.2010.541966.
  • R. Mohammadi, E. Eidi, M. Ghavami, and M. Z. Kassaee, “Chitosan Synergistically Enhanced by Successive Fe3O4 and Silver Nanoparticles as a Novel Green Catalyst in One-Pot, Three-Component Synthesis of Tetrahydrobenzo[α]Xanthene-11-Ones,” Journal of Molecular Catalysis A: Chemical 393 (2014): 309–16. doi:10.1016/j.molcata.2014.06.005.
  • M. A. Ghasemzadeh, “Synthesis and Characterization of Fe3O4@SiO2 NPs as an Effective Catalyst for the Synthesis of Tetrahydrobenzo[a]Xanthen-11-Ones,” Acta Chimica Slovenica 62, no. 4 (2015): 977–85. doi:10.17344/acsi.2015.1501.
  • D. Fang, J.-M. Yang, and Y.-F. Cao, “Synthesis of 12-Aryl-8,9,10,12-Tetrahydrobenzo[a]Xanthene-11-Ones Catalyzed by Biodegradable Ionic Liquid,” Research on Chemical Intermediates 39, no. 4 (2013): 1745–51. doi:10.1007/s11164-012-0709-4.
  • S. Mitra, P. S. Veluri, A. Chakraborthy, and R. K. Petla, “Electrochemical Properties of Spinel Cobalt Ferrite Nanoparticles with Sodium Alginate as Interactive Binder,” ChemElectroChem 1, no. 6 (2014): 1068–74. doi:10.1002/celc.201400026.
  • B. Purnama, A. Khoiriah, and Suharyana, “Structural and Magnetic Properties of Aluminum-Substituted Cobalt-Ferrite Nanoparticles Synthesized by the Co-Precipitation Route,” Journal of Magnetics 23, no. 1 (2018): 106–11. doi:10.4283/JMAG.2018.23.1.106.
  • N. Abbas, N. Rubab, N. Sadiq, S. Manzoor, M. I. Khan, J. F. Garcia, I. B. Aragao, M. Tariq, Z. Akhtar, and G. Yasmin, “Aluminum-Doped Cobalt Ferrite as an Efficient Photocatalyst for the Abatement of Methylene Blue,” Water 12, no. 8 (2020): 2285. doi:10.3390/w12082285.
  • G. Evans, I. V. Kozhevnikov, E. F. Kozhevnikova, J. B. Claridge, R. Vaidhyanathan, C. Dickinson, C. D. Wood, A. I. Cooper, and M. J. Rosseinsky, “Particle Size–Activity Relationship for CoFe2O4 Nanoparticle CO Oxidation Catalysts,” Journal of Materials Chemistry 18, no. 45 (2008): 5518–23. doi:10.1039/b807412g.
  • Z.-H. Zhang, H.-J. Wang, X.-Q. Ren, and Y.-Y. Zhang, “A Facile and Efficient Method for Synthesis of Xanthone Derivatives Catalyzed by HBF4/SiO2 under Solvent-Free Conditions,” Monatshefte für Chemie 140 (2009): 1481–83.
  • M. A. Zolfigol, V. Khakyzadeh, A. R. Moosavi-Zare, A. Zare, S. B. Azimi, Z. Asgari, and A. Hasaninejad, “Preparation of Various Xanthene Derivatives over Sulfonic Acid Functionalized Imidazolium Salts (SAFIS) as Novel, Highly Efficient and Reusable Catalysts,” Comptes Rendus Chimie 15, no. 8 (2012): 719–36. doi:10.1016/j.crci.2012.05.003.
  • S. Sonei, M. Gholizadeh, and F. Taghavi, “Cu(II) Anchored on Modified Magnetic Nanoparticles: As a Green and Efficient Recyclable Nano Catalyst for One Pot Synthesis of 12-Aryl-9,10,12 Tetrahydrobenzo[a]Xanthene-11-One, Polycyc,” Polycyclic Aromatic Compounds 40, no. 4 (2020): 1127–42. doi:10.1080/10406638.2018.1531431.
  • S. Kamalifar and H. Kiyani, “Facile and Efficient Synthesis of 9-Aryl-1,8-DioxoO Ctahydro Xanthenes Catalyzed by Sulfacetamide,” Polycyclic Aromatic Compounds (2021): 1–19 (in press). doi:10.1080/10406638.2021.1872656.
  • M. Mehravar, B. B. F. Mirjalili, E. Babaei, and A. Bamoniri, “Efficient Solvent Free Synthesis of Tetrahydrobenzo[a]Xanthene-11-One Derivatives Using Nano-AlPO4/Ti(IV) as a green, heterogeneous and reusable catalyst,” Inorganic and Nano-Metal Chemistry 52 (2022): 241–42.
  • M. Sadeghpour and F. Bagheri, “Novel Synthetic Approach for the Access of Functionalised 4H-Chromenes,” Journal of Chemical Research 40, no. 12 (2016): 740–3. doi:10.3184/174751916X14792153319761.
  • P. Mane, B. Shinde, P. Mundada, V. Gawade, B. Karale, and A. Burungale, “Sodium Acetate/MWI: A Green Protocol for the Synthesis of Tetrahydrobenzo[α]Xanthen-11-Ones with Biological Screening,” Research on Chemical Intermediates 46, no. 1 (2020): 231–41. doi:10.1007/s11164-019-03945-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.