132
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis of Novel Bis(Sulfanediyl)Bis(Tetrahydropyrimido[4,5-b]Quinoline-4,6-Diones) Linked to Butenyl and Butynyl Spacers via Thioether Linkages

, , , ORCID Icon & ORCID Icon
Pages 4084-4102 | Received 03 Feb 2022, Accepted 17 May 2022, Published online: 31 May 2022

References

  • S. Brauch, S. S. van Berkel, and B. Westermann, “Higher-Order Multicomponent Reactions: Beyond Four Reactants,” Chemical Society Reviews 42, no. 12 (2013): 4948–62. doi:10.1039/c3cs35505e.
  • M. R. Shaaban, and A. H. M. Elwahy, "Synthesis of Furo-, Pyrrolo-, and Thieno-Fused Heterocycles by Multi-Component Reactions (Part 1)," Current Organic Synthesis 10, no. 3 (2013): 425. doi:10.2174/1570179411310030007.
  • R. P. Gore, and A. Rajput, “A Review on Recent Progress in Multicomponent Reactions of Pyrimidine Synthesis,” Drug Invention Today 5, no. 2 (2013): 148–52. doi:10.1016/j.dit.2013.05.010.
  • J. Zhu, and H. Bienayme, Multicomponent Reactions (Weinheim: John Wiley & Sons, 2006).
  • V. A. Chebanov, E. A. Muravyova, S. V. Shishkina, V. I. Musatov, I. V. Knyazeva, O. V. Shishkin, and S. M. Desenko, “Chemoselectivity of Multicomponent Condensations of Barbituric Acids, 5-Aminopyrazoles, and Aldehydes,” Synthesis 2009, no. 08 (2009): 1375–85. doi:10.1055/s-0028-1088024.
  • J. D. Sunderhaus, and S. F. Martin, “Applications of Multicomponent Reactions to the Synthesis of Diverse Heterocyclic Scaffolds,” Chemistry (Weinheim an der Bergstrasse, Germany) 15, no. 6 (2009): 1300–8. doi:10.1002/chem.200802140.
  • N. Isambert, M. del M. S. Duque, J.-C. Plaquevent, Y. Génisson, J. Rodriguez, and T. Constantieux, “Multicomponent Reactions and Ionic Liquids: A Perfect Synergy for Eco-Compatible Heterocyclic Synthesis,” Chemical Society Reviews 40, no. 3 (2011): 1347–57. doi:10.1039/C0CS00013B.
  • I. Antonini, P. Polucci, A. Magnano, S. Sparapani, and S. Martelli, “Rational Design, Synthesis, and Biological Evaluation of Bis(Pyrimido[5,6,1-de]Acridines) and Bis(Pyrazolo[3,4,5-kl]Acridine-5-Carboxamides) as New Anticancer Agents,” Journal of Medicinal Chemistry 47, no. 21 (2004): 5244–50. doi:10.1021/jm049706k.
  • A. M. Abdella, M. F. Mohamed, A. F. Mohamed, A. H. M. Elwahy, and I. A. Abdelhamid, “Novel Bis(Dihydropyrano[3,2- c ]Chromenes): Synthesis, Antiproliferative Effect and Molecular Docking Simulation,” Journal of Heterocyclic Chemistry 55, no. 2 (2018): 498–507. doi:10.1002/jhet.3072.
  • M. F. Mohamed, A. M. Abdelmoniem, A. H. M. Elwahy, and I. A. Abdelhamid, “DNA Fragmentation, Cell Cycle Arrest, and Docking Study of Novel Bis Spiro-Cyclic 2-Oxindole of Pyrimido[4,5-b]Quinoline-4,6-Dione Derivatives against Breast Carcinoma,” Current Cancer Drug Targets 18, no. 4 (2018): 372–81. doi:10.2174/1568009617666170630143311.
  • I. Antonini, P. Polucci, A. Magnano, B. Gatto, M. Palumbo, E. Menta, N. Pescalli, and S. Martelli, “Design, Synthesis, and Biological Properties of New Bis(Acridine-4-Carboxamides) as Anticancer Agents,” Journal of Medicinal Chemistry 46, no. 14 (2003): 3109–15. doi:10.1021/jm030820x.
  • S. M. Abou-Seri, “Synthesis and Biological Evaluation of Novel 2,4'-Bis Substituted Diphenylamines as Anticancer Agents and Potential Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors,” European Journal of Medicinal Chemistry 45, no. 9 (2010): 4113–21. doi:10.1016/j.ejmech.2010.05.072.
  • A. Modzelewska, C. Pettit, G. Achanta, N. E. Davidson, P. Huang, and S. R. Khan, “Anticancer Activities of Novel Chalcone and Bis-Chalcone Derivatives,” Bioorganic & Medicinal Chemistry 14, no. 10 (2006): 3491–5. doi:10.1016/j.bmc.2006.01.003.
  • A. Raasch, O. Scharfenstein, C. Tränkle, U. Holzgrabe, and K. Mohr, “Elevation of Ligand Binding to Muscarinic M(2) Acetylcholine Receptors by Bis(Ammonio)Alkane-Type Allosteric Modulators,” Journal of Medicinal Chemistry 45, no. 17 (2002): 3809–12. doi:10.1021/jm020871e.
  • M. Jain, R. Sakhuja, P. Khanna, S. Bhagat, and S. C. Jain, “A Facile Synthesis of Novel Unsymmetrical Bis-Spiro[Indole-Pyrazolinyl-Thiazolidine]-2,4'-Diones,” Arkivoc 2008, no. 15 (2008): 54–64. doi:10.3998/ark.5550190.0009.f07.
  • G. Y. Yang, K. A. Oh, N. J. Park, and Y. S. Jung, “New Oxime Reactivators Connected with CH2O(CH2)nOCH2 Linker and Their Reactivation Potency for Organophosphorus Agents-Inhibited Acetylcholinesterase,” Bioorganic & Medicinal Chemistry 15, no. 24 (2007): 7704–10. doi:10.1016/j.bmc.2007.08.056.
  • B. Di Giacomo, A. Bedini, G. Spadoni, G. Tarzia, F. Fraschini, M. Pannacci, and V. Lucini, “Synthesis and Biological Activity of New Melatonin Dimeric Derivatives,” Bioorganic & Medicinal Chemistry 15, no. 13 (2007): 4643–50. doi:10.1016/j.bmc.2007.03.080.
  • C. Wang, G. Y. Jung, A. S. Batsanov, M. R. Bryce, and M. C. Petty, “New Electron-Transporting Materials for Light Emitting Diodes: 1,3,4-Oxadiazole–Pyridine and 1,3,4-Oxadiazole–Pyrimidine Hybrids,” Journal of Materials Chemistry 12, no. 2 (2002): 173–80. doi:10.1039/b106907c.
  • C. Wang, G. Y. Jung, Y. Hua, C. Pearson, M. R. Bryce, M. C. Petty, A. S. Batsanov, A. E. Goeta, and J. A. K. Howard, “An Efficient Pyridine- and Oxadiazole-Containing Hole-Blocking Material for Organic Light-Emitting Diodes: Synthesis, Crystal Structure, and Device Performance,” Chemistry of Materials 13, no. 4 (2001): 1167–73. doi:10.1021/cm0010250.
  • F. Mir, S. Shafi, M. S. Zaman, N. P. Kalia, V. S. Rajput, C. Mulakayala, N. Mulakayala, I. A. Khan, and M. S. Alam, “Sulfur Rich 2-Mercaptobenzothiazole and 1,2,3-Triazole Conjugates as Novel Antitubercular Agents,” European Journal of Medicinal Chemistry 76 (2014): 274–83. doi:10.1016/j.ejmech.2014.02.017.
  • N. Siddiqui, A. Rana, S. A. Khan, S. E. Haque, M. S. Alam, W. Ahsan, and S. Ahmed, “Synthesis of 8-Substituted-4-(2/4-Substituted Phenyl)-2H-[1,3,5]Triazino[2,1-b][1,3]Benzothiazole-2-Thiones and Their Anticonvulsant, anti-Nociceptive, and Toxicity Evaluation in Mice,” Journal of Enzyme Inhibition and Medicinal Chemistry. 24, no. 6 (2009): 1344–50. doi:10.3109/14756360902888176.
  • O. Prakash, D. K. Aneja, K. Hussain, P. Lohan, P. Ranjan, S. Arora, C. Sharma, and K. R. Aneja, “Synthesis and Biological Evaluation of Dihydroindeno and Indeno [1,2-e] [1,2,4]Triazolo [3,4-b] [1,3,4]Thiadiazines as Antimicrobial Agents,” European Journal of Medicinal Chemistry 46, no. 10 (2011): 5065–73. doi:10.1016/j.ejmech.2011.08.019.
  • V. Sumangala, B. Poojary, N. Chidananda, T. Arulmoli, and S. Shenoy, “Facile Synthesis, Cytotoxic and Antimicrobial Activity Studies of a New Group of 6-Aryl-3-[4-(Methylsulfonyl)Benzyl]-7H-[1,2,4]Triazolo[3,4-b][1,3,4]Thiadiazines,” European Journal of Medicinal Chemistry 54 (2012): 59–64. doi:10.1016/j.ejmech.2012.04.024.
  • X. Nqoro, N. Tobeka, and B. A. Aderibigbe, “Quinoline-Based Hybrid Compounds with Antimalarial Activity,” Molecules 22, no. 12 (2017): 2268. doi:10.3390/molecules22122268.
  • M. Ghorab, F. Ragab, E. Noaman, H. Heiba, and E. El-Hossary, “Synthesis of Some Novel Quinolines and Pyrimido [4,5-b] Quinolines Bearing a Sulfonamide Moiety as Potential Anticancer and Radioprotective Agents,” Arzneimittel-Forschung 57, no. 12 (2007): 795–803. doi:10.1055/s-0031-1296682.
  • M. M. Ghorab, F. Ragab, H. I. Heiba, R. K. Arafa, and E. M. El-Hossary, “In Vitro Anticancer Screening and Radiosensitizing Evaluation of Some New Quinolines and Pyrimido[4,5-b]Quinolines Bearing a Sulfonamide Moiety,” European Journal of Medicinal Chemistry 45, no. 9 (2010): 3677–84. doi:10.1016/j.ejmech.2010.05.014.
  • O. M. Sayed, A. E. M. Mekky, A. M. Farag, and A. H. M. Elwahy, “3,4-Dimethyl-2,5-Functionalized Thieno[2,3- b ]Thiophenes: versatile Precursors for Novel Bis-Thiazoles,” Journal of Sulfur Chemistry. 36, no. 2 (2015): 124–34. doi:10.1080/17415993.2014.975131.
  • O. M. Sayed, A. E. M. Mekky, A. M. Farag, and A. H. M. Elwahy, “3,4-Bis(Bromomethyl)Thieno[2,3- b ]Thiophene: Versatile Precursors for Novel Bis(Triazolothiadiazines), Bis(Quinoxalines), Bis(Dihydrooxadiazoles), and Bis(Dihydrothiadiazoles),” Journal of Heterocyclic Chemistry 53, no. 4 (2016): 1113–20. doi:10.1002/jhet.2373.
  • A. H. M. Elwahy, and A. A. Abbas, “Bis(β-Difunctional) Compounds: Versatile Starting Materials for Novel Bis(Heterocycles),” Synthetic Communications. 30, no. 16 (2000): 2903–21. doi:10.1080/00397910008087441.
  • A. H. M. Elwahy, and A. A. Abbas, “Synthesis of New Benzo-Substituted Macrocyclic Ligands Containing Pyridine or Triazole as Subcyclic Units,” Tetrahedron 56, no. 6 (2000): 885–95. doi:10.1016/S0040-4020(99)01068-6.
  • A. H. M. Elwahy, A. A. Abbas, and R. M. Kassab, Synthesis, no. 2 (2002): 260.
  • N. A. Abd El-Fatah, A. F. Darweesh, A. A. Mohamed, I. A. Abdelhamid, and A. H. M. Elwahy, “Experimental and Theoretical Study on the Regioselective Bis- and Polyalkylation of 2-Mercaptonicotinonitrile and 2-Mercaptopyrimidine-5-Carbonitrile Derivatives,” Tetrahedron 73, no. 11 (2017): 1436–50. doi:10.1016/j.tet.2017.01.047.
  • A. Elwahy, and M. Shaaban, “Synthesis of Trifluoromethyl-Substituted Fused Bicyclic Heterocycles and Their Corresponding Benzo-Fused Analogues,” Current Organic Synthesis 7, no. 5 (2010): 433–54. doi:10.2174/157017910792246117.
  • Y. A. Ibrahim, A. A. Abbas, and A. H. M. Elwahy, “New Trends in the Chemistry of Condensed Heteromacrocycles Part B: Macrocyclic Formazans,” Journal of Heterocyclic Chemistry 41, no. 2 (2004): 135–49. doi:10.1002/jhet.5570410202.
  • M. R. Shaaban, and A. H. M. Elwahy, “Synthesis of Oxazolo-, Thiazolo-, Pyrazolo-, and Imidazo-Fused Heterocycles by Multi-Component Reactions (Part 2),” Current Organic Synthesis 11, no. 4 (2014): 471–525. doi:10.2174/15701794113106660076.
  • S. A. S. Ghozlan, A. G. Ahmed, and I. A. Abdelhamid, “Regioorientation in the Addition Reaction of α-Substituted Cinnamonitrile to Enamines Utilizing Chitosan as a Green Catalyst: Unambiguous Structural Characterization Using 2D-HMBC NMR Spectroscopy,” Journal of Heterocyclic Chemistry 53, no. 3 (2016): 817–23. doi:10.1002/jhet.2341.
  • S. A. S. Ghozlan, A. M. Abdelmoniem, H. Butenschön, and I. A. Abdelhamid, “Discrepancies in the Reactivity Pattern of Azaenamines towards Cinnamonitriles: synthesis of Novel Aza-Steroid Analogues,” Tetrahedron 71, no. 9 (2015): 1413–8. doi:10.1016/j.tet.2015.01.026.
  • F. M. Saleh, H. M. Hassaneen, and I. A. Abdelhamid, “Hantzsch-Like Three-Component Synthesis of 9,10-Dihydro-3H-10a-Azaphenanthrene-2,4-Dicarbonitriles,” Synlett 31, no. 11 (2020): 1126–8. doi:10.1055/s-0039-1690902.
  • A. M. Abdella, A. M. Abdelmoniem, N. S. Ibrahim, S. M. El-Hallouty, I. A. Abdelhamid, and A. H. M. Elwahy, “Synthesis, Cytotoxicity and Molecular Docking Simulation of Novel Bis-1,4-Dihydropyridines Linked to Aliphatic or Arene Core via Amide or Ester-Amide Linkages,” Mini Reviews in Medicinal Chemistry 20, no. 9 (2020): 801–16. doi:10.2174/1389557519666190919160019.
  • M. M. Poojary, P. Putnik, D. Bursać Kovačević, F. J. Barba, J. M. Lorenzo, D. A. Dias, and A. Shpigelman, “Stability and Extraction of Bioactive Sulfur Compounds from Allium Genus Processed by Traditional and Innovative Technologies,” Journal of Food Composition and Analysis 61 (2017): 28–39. doi:10.1016/j.jfca.2017.04.007.
  • S. Cai, J. B. King, L. Du, D. R. Powell, and R. H. Cichewicz, “Bioactive Sulfur-Containing Sulochrin Dimers and Other Metabolites from an Alternaria sp. isolate from a Hawaiian Soil Sample,” Journal of Natural Products 77, no. 10 (2014): 2280–7. doi:10.1021/np5005449.
  • M. Blom, S. Norrehed, C. H. Andersson, H. Huang, M. E. Light, J. Bergquist, H. Grennberg, and A. Gogoll, “Synthesis and Properties of Bis-Porphyrin Molecular Tweezers: Effects of Spacer Flexibility on Binding and Supramolecular Chirogenesis,” Molecules 21, no. 1 (2015): 16. doi:10.3390/molecules21010016.
  • M. T. Garcia, O. Kaczerewska, I. Ribosa, B. Brycki, P. Materna, and M. Drgas, “Hydrophilicity and Flexibility of the Spacer as Critical Parameters on the Aggregation Behavior of Long Alkyl Chain Cationic Gemini Surfactants in Aqueous Solution,” Journal of Molecular Liquids. 230 (2017): 453–60. doi:10.1016/j.molliq.2017.01.053.
  • A. Mbarek, G. Moussa, and J. L. Chain, “Pharmaceutical Applications of Molecular Tweezers, Clefts and Clips,” Molecules 24, no. 9 (2019): 1803. doi:10.3390/molecules24091803.
  • H. M. Diab, M. E. Salem, I. A. Abdelhamid, and A. H. M. Elwahy, “Hantzsch-like Synthesis of Bis(Sulfanediyl)Bis(Tetrahydropyrimido[4,5-b]Quinoline-4,6-Diones) Linked to Arene or Heteroarene Cores Utilizing Bis(Sulfanediyl)Bis(6-Aminopyrimidin-4-Ones) as Precursors,” Monatshefte Für Chemie - Chemical Monthly 152, no. 8 (2021): 967–76. doi:10.1007/s00706-021-02825-4.
  • H. M. Diab, M. E. Salem, A. H. M. Elwahy, and I. A. Abdelhamid, "Bis(sulfanediyl)bis(6-aminopyrimidin-4-ones): Versatile precursors for novel bis(sulfanediyl)bis(tetrahydropyrimido[4,5-b]quinoline-4,6-diones) linked to aliphatic spacer via multi-component reactions," Synthetic Communications 51, no. 13 (2021): 2001. doi:10.1080/00397911.2021.1918172.
  • F. H. Al-Ostoot, S. Zabiulla Salah, and S. A. Khanum, "Recent investigations into synthesis and pharmacological activities of phenoxy acetamide and its derivatives (chalcone, indole and quinoline) as possible therapeutic candidates," Journal of the Iranian Chemical Society 18, no. 8 (2021): 1839. doi:10.1007/S13738-021-02172-5.
  • V. Yele, M. A. Azam, and A. D. Wadhwani, “Synthesis, Molecular Docking and Biological Evaluation of 2-Aryloxy-N-Phenylacetamide and N'-(2-Aryloxyoxyacetyl) Benzohydrazide Derivatives as Potential Antibacterial Agents,” Chemistry & Biodiversity 18, no. 4 (2021): e2000907 doi:10.1002/cbdv.202000907.
  • H. Lin, and S. J. Danishefsky, “Gelsemine: A thought-provoking target for total synthesis ,” Angewandte Chemie (International ed. in English) 42, no. 1 (2003): 36–51. doi:10.1002/anie.200390048.
  • C. Marti, and E. M. Carreira, “Construction of Spiro[Pyrrolidine‐3,3′‐Oxindoles] − Recent Applications to the Synthesis of Oxindole Alkaloids,” European Journal of Organic Chemistry 2003, no. 12 (2003): 2209–19. doi:10.1002/ejoc.200300050.
  • R. M. Williams, and R. J. Cox, “Paraherquamides, Brevianamides, and Asperparalines: laboratory Synthesis and Biosynthesis. An Interim Report,” Accounts of Chemical Research 36, no. 2 (2003): 127–39. doi:10.1021/ar020229e.
  • C. V. Galliford, and K. A. Scheidt, “Pyrrolidinyl-Spirooxindole Natural Products as Inspirations for the Development of Potential Therapeutic Agents,” Angewandte Chemie (International ed. in English) 46, no. 46 (2007): 8748–58. doi:10.1002/anie.200701342.
  • S. Edmondson, S. J. Danishefsky, L. Sepp-Lorenzino, and N. Rosen, “Total Synthesis of Spirotryprostatin A, Leading to the Discovery of Some Biologically Promising Analogues,” Journal of the American Chemical Society 121, no. 10 (1999): 2147–55. doi:10.1021/ja983788i.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.