232
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Iodine Mediated Oxidative Cross-Coupling of Benzo[d]Imidazo[2,1-b]Thiazoles with Ethylbenzene: An Unprecedented Approach of C3-Dicarbonylation

, , , , , & show all
Pages 4045-4054 | Received 14 Feb 2022, Accepted 14 May 2022, Published online: 02 Jun 2022

References

  • C. Liu, H. Zhang, W. Shi, and A. W. Lei, “Bond Formations between Two Nucleophiles: Transition Metal Catalyzed Oxidative Cross-Coupling Reactions,” Chemical Reviews 111, no. 3 (2011): 1780–824. doi:10.1021/cr100379j.
  • W. Shi, C. Liu, and A. W. Lei, “ Transition-Metal Catalyzed Oxidative Cross-Coupling Reactions to Form C-C Bonds Involving Organometallic Reagents as Nucleophiles,” Chemical Society Reviews 40, no. 5 (2011): 2761–76. doi:10.1039/c0cs00125b.
  • Z. Z. Shi, C. Zhang, C. H. Tang, and N. Jiao, “Recent Advances in Transition-Metal Catalyzed Reactions Using Molecular Oxygen as the Oxidant,” Chemical Society Reviews 41, no. 8 (2012): 3381–430. doi:10.1039/c2cs15224j.
  • C. Zhang, C. H. Tang, and N. Jiao, “Recent Advances in Copper-Catalyzed Dehydrogenative Functionalization via a Single Electron Transfer (SET) Process,” Chemical Society Reviews 41, no. 9 (2012): 3464–84. doi:10.1039/c2cs15323h.
  • B. J. Li, and Z. J. Shi, “From C(sp2)–H to C(sp3)–H: systematic Studies on Transition Metal-Catalyzed Oxidative C–C Formation,” Chemical Society Reviews 41, no. 17 (2012): 5588–98. no doi:10.1039/c2cs35096c.
  • T. L. Chan, Y. Wu, P. Y. Choy, and F. Y. Kwong, “A Radical Process towards the Development of Transition-Metal-Free Aromatic Carbon-Carbon Bond-Forming Reactions,” Chemistry (Weinheim an Der Bergstrasse, Germany) 19, no. 47 (2013): 15802– 14. doi:10.1002/chem.201301583.
  • Jin Xie, Changduo Pan, Ablimit Abdukader, and Chengjian Zhu, “Gold-Catalyzed C(sp3)-H Bond Functionalization,” Chemical Society Reviews 43, no. 15 (2014): 5245–56. doi:10.1039/c4cs00004h.
  • C. L. Sun, and Z. J. Shi, “Transition-Metal-Free Coupling Reactions,” Chemical Reviews 114, no. 18 (2014): 9219–80. doi:10.1021/cr400274j.
  • P. S. Wang, H. C. Lin, Y. J. Zhai, Z. Y. Han, and L. Z. Gong, “Chiral Counteranion Strategy for Asymmetric Oxidative C(sp³)-H/C(sp³)-H Coupling: Enantioselective α-Allylation of aldEhydes with Terminal Alkenes,” Angewandte Chemie (International ed. in English) 53, no. 45 (2014): 12218–21. doi:10.1002/anie.201408199.
  • T. Tomakinian, R. Guillot, C. Kouklovsky, and G. Vincent, “Direct Oxidative Coupling of N-Acetyl Indoles and Phenols for the Synthesis of Benzofuroindolines Related to Phalarine,” Angewandte Chemie (International ed. in English) 53, no. 44 (2014): 11881–5. doi:10.1002/anie.201404055.
  • Y. Xia, Y. M. Xia, R. Ge, Z. Liu, Q. Xiao, Y. Zhang, and J. B. Wang, “Oxidative Cross-Coupling of Allenyl Ketones and Organoboronic Acids: Expeditious Synthesis of Highly Substituted Furans,” Angewandte Chemie (International ed. in English) 53, no. 15 (2014): 3917–21. doi:10.1002/anie.201400500.
  • J. X. Shen, D. J. Yang, Y. X. Liu, S. S. Qin, J. W. Zhang, J. K. Sun, C. H. Liu, C. Y. Liu, X. M. Zhao, C. H. Chu, et al, “Copper-Catalyzed Aerobic Oxidative Coupling of Aromatic Alcohols and Acetonitrile to β-Ketonitriles,” Organic Letters 16, no. 2 (2014): 350–3. doi:10.1021/ol403555n.
  • M. N. Zhao, Z. H. Ren, Y. Y. Wang, and Z. H. Guan, “Pd-Catalyzed Oxidative Coupling of Enamides and Alkynes for Synthesis of Substituted Pyrroles,” Organic Letters 16, no. 2 (2014): 608–11. doi:10.1021/ol403517p.
  • S. Tang, X. D. Wu, W. Q. Liao, K. Liu, C. Liu, S. Z. Luo, and A. W. Lei, “Synergistic Pd/Enamine Catalysis: “ a strategy for the C-H/C-H oxidative coupling of allylarenes with unactivated ketones,” Organic Letters 16, no. 13 (2014): 3584–7. doi:10.1021/ol501584d.
  • N. Gigant, and J.-E. Bäckvall, “Access to Cinnamyl Derivatives from Arenes and Allyl Esters by a Biomimetic Aerobic Oxidative Dehydrogenative Coupling,” Organic Letters 16, no. 6 (2014): 1664–7. nodoi:10.1021/ol500326g.
  • Z. G. Zhang, and X. F. Jiang, “Oxidative Coupling of Terminal Alkyne with α-Hydroxy Ketone: An Expedient Approach toward Ynediones,” Organic Letters 16, no. 17 (2014): 4400–3. nodoi:10.1021/ol502298a.
  • H. H. Peng, Y. M. Xi, N. M. Ronaghi, B. L. Dong, N. G. Akhmedov, and X. D. Shi, “Gold-Catalyzed Oxidative Cross-Coupling of Terminal Alkynes: Selective Synthesis of Unsymmetrical 1,3-Diynes,” Journal of the American Chemical Society 136, no. 38 (2014): 13174–7. doi:10.1021/ja5078365.
  • D. Wang, Y. Izawa, and S. S. Stahl, “Pd-Catalyzed Aerobic Oxidative Coupling of Arenes: Evidence for Transmetalation between Two Pd(II)-Aryl Intermediates,” Journal of the American Chemical Society 136, no. 28 (2014): 9914–7. doi:10.1021/ja505405u.
  • T. Nobuta, N. Tada, A. Fujiya, A. Kariya, T. Miura, and A. Itoh, “Molecular Iodine Catalyzed Cross-Dehydrogenative Coupling Reaction between Two sp3 C-H bonds using hydrogen peroxide,” Organic Letters 15, no. 3 (2013): 574–577. doi:10.1021/ol303389t.
  • J. D. Kumar, M. Lamani, K. Alagiri, and K. R. Prabhu, “A Versatile C-H Functionalization of Tetrahydroisoquinolines Catalyzed by Iodine at Aerobic Conditions,” Organic Letters 15, no. 5 (2013): 1092–5. doi:10.1021/ol4001153.
  • F. Jia, Y. Zhu, M. Liu, M. Lian, Q. Gao, Q. Cai, and A. Wu, “I2-Promoted Direct One-Pot Synthesis of 2,2-Bis-Indolyl-1-Arylethanones from Multiform Substrates Arylethenes, 2-Hydroxy-Aromatic Ketones, and Carbinols,” Tetrahedron 69, no. 34 (2013): 7038–44. doi:10.1016/j.tet.2013.06.054.
  • Z. Fei, Y. Zhu, M. Liu, F. Jia, and A. Wu, “I2-Promoted Direct One-Pot Synthesis of 2-Aryl-3-(Pyridine-2-Ylamino)Imidazo[1,2-a]Pyridines from Aromatic Ketones and 2-Aminopyridines,” Tetrahedron Letters 54, no. 10 (2013): 1222–6. doi:10.1016/j.tetlet.2012.12.072.
  • Y. Zhu, Z. Fei, M. Liu, F. Jia, and A. Wu, “Direct One-Pot Synthesis of Luotonin F and Analogues via Rational Logical Design,” Organic Letters 15, no. 2 (2013): 378–81. doi:10.1021/ol303331g.
  • Y. Zhu, F. Jia, M. Liu, and A. Wu, “A Multipathway Coupled Domino Strategy: Metal-Free Oxidative Cyclization for One-Pot Synthesis of 2-Acylbenzothiazoles from Multiform Substrates,” Organic Letters 14, no. 17 (2012): 4414–7. nodoi:10.1021/ol301921t.
  • Y. Zhu, M. Liu, F. Jia, J. Yuan, Q. Gao, M. Lian, and A. Wu, “Metal-Free sp3 C-H Bond Dual-(het)Arylation: I2-Promoted Domino Process to Construct 2,2-Bisindolyl-1-Arylethanones,” Organic Letters 14, no. 13 (2012): 3392–5. no doi:10.1021/ol301366p.
  • Wenlei Ge, Xun Zhu, and Yunyang Wei, “Iodine-Catalyzed Oxidative System for Cyclization of Primary Alcohols with o-Aminobenzamides to Quinazolinones Using DMSO as the Oxidant in Dimethyl Carbonate,” RSC Advances 3, no. 27 (2013): 10817–22. doi:10.1039/c3ra40872h.
  • W. Ge, X. Zhu, and Y. Wei, “Iodine-Catalyzed Oxidative System for 3-Sulfenylation of Indoles with Disulfides Using DMSO as Oxidant under Ambient Conditions in Dimethyl Carbonate,” Green Chemistry 14, no. 7 (2012): 2066–70. doi:10.1039/c2gc35337g.
  • Y. Ashikari, A. Shimizu, T. Nokami, and J. Yoshida, “Halogen and Chalcogen Cation Pools Stabilized by DMSO. Versatile Reagents for Alkene Difunctionalization,” Journal of the American Chemical Society 135, no. 43 (2013): 16070–3. doi:10.1021/ja4092648.
  • H. Wang, S. Ren, J. Zhang, W. Zhang, and Y. Liu, “Selectfluor-Mediated Simultaneous Cleavage of C–O and C–C Bonds in α,β-Epoxy Ketones under Transition-Metal-Free Conditions: A Route to 1,2-Diketones,” The Journal of Organic Chemistry 80, no. 13 (2015): 6856–63. doi:10.1021/acs.joc.5b00857.
  • H. Min, T. Palani, K. Park, J. Hwang, and S. Lee, “Copper-Catalyzed Direct Synthesis of Diaryl 1,2-Diketones from Aryl Iodides and Propiolic Acids,” The Journal of Organic Chemistry 79, no. 13 (2014): 6279–85. doi:10.1021/jo501089k.
  • A. Stergiou, A. Bariotaki, D. Kalaitzakis, and I. Smonou, “Oxone-Mediated Oxidative Cleavage of β-Keto Esters and 1,3-Diketones to α-Keto Esters and 1,2-Diketones in Aqueous Medium,” The Journal of Organic Chemistry 78, no. 14 (2013): 7268–73. doi:10.1021/jo4009047.
  • B. Schmidt, S. Krehl, and S. Hauke, “Assisted Tandem Catalytic Cross Metathesis-Oxidation: In One Flask from Styrenes to 1,2-Diketones and Further to Quinoxalines ,” The Journal of Organic Chemistry 78, no. 11 (2013): 5427–35. doi:10.1021/jo4005684.
  • A. Wang, H. Jiang, and X. Li, “Palladium-Catalyzed Carbonation-Diketonization of Terminal Aromatic Alkenes via Carbon-Nitrogen Bond Cleavage for the Synthesis of 1,2-Diketones ,” The Journal of Organic Chemistry 76, no. 16 (2011): 6958–61. doi:10.1021/jo201029p.
  • L. Huang, K. Cheng, B. Yao, Y. Xie, and Y. Zhang, “Iron-Promoted C–C Bond Cleavage of 1,3-Diketones: A Route to 1,2-Diketones under Mild Reaction Conditions,” The Journal of Organic Chemistry 76, no. 14 (2011): 5732–7. doi:10.1021/jo200840y.
  • M. Lian, Q. Li, Y. Zhu, G. Yin, and A. Wu, “Logic Design and Synthesis of Quinoxalines via the Integration of Iodination/Oxidation/Cyclization Sequences from Ketones and 1,2-Diamines,” Tetrahedron 68, no. 47 (2012): 9598–605. doi:10.1016/j.tet.2012.09.056.
  • C. F. Xu, M. Xu, Y. X. Jia, and C. Y. Li, “Gold-Catalyzed Synthesis of Benzil Derivatives and α-Keto Imides via Oxidation of Alkynes,” Organic Letters 13, no. 6 (2011): 1556–9. doi:10.1021/ol200270t.
  • Eugen Merkul, Janis Dohe, Charlotte Gers, Frank Rominger, and Thomas J. J. Müller, “Dreikomponentensynthese Von Indionen Durch Eine GlyoxylierungsStephens-Castro-Kupplungs-Sequenz,” Angewandte Chemie 123, no. 13 (2011): 3023–6. doi:10.1002/ange.201007194.
  • W. X. Lv, Y. F. Zeng, S. S. Zhang, Q. Li, and H. Wang, “Mild Mn(OAc)3-Mediated Aerobic Oxidative Decarboxylative Coupling of Arylboronic Acids and Arylpropiolic Acids: Direct Access to Diaryl 1,2-Diketones,” Organic Letters 17, no. 12 (2015): 2972–5. nodoi:10.1021/acs.orglett.5b01265.
  • Q. Xing, L. Shi, R. Lang, C. Xia, and F. Li, “Palladium-Catalyzed Mono- and Double-Carbonylation of Indoles with Amines Controllably Leading to Amides and α-Ketoamides,” Chemical Communications (Cambridge, England) 48, no. 89 (2012): 11023–5. doi:10.1039/c2cc36341k.
  • T. H. Al-Tel, R. A. Al-Qawasmeh, and R. Zaarour, “Design, Synthesis and in Vitro Antimicrobial Evaluation of Novel Imidazo[1,2-a]Pyridine and Imidazo[2,1-b][1,3]Benzothiazole Motifs,” European Journal of Medicinal Chemistry 46, no. 5 (2011): 1874–81. doi:10.1016/j.ejmech.2011.02.051.
  • I. R. Ager, A. C. Barnes, G. W. Danswan, P. W. Hairsine, D. P. Kay, P. D. Kennewell, S. S. Matharu, P. Miller, P. Robson, and D. A. Rowlands, “Synthesis and Oral Antiallergic Activity of Carboxylic Acids Derived from Imidazo[2,1-c][1,4]Benzoxazines, Imidazo[1,2-a]Quinolines, Imidazo[1,2-a]Quinoxalines, Imidazo[1,2-a]Quinoxalinones, Pyrrolo[1,2-a]Quinoxalinones, Pyrrolo[2,3-a]Quinoxalinones, and Imidazo[2,1-b]Benzothiazoles,” Journal of Medicinal Chemistry 31, no. 6 (1988): 1098–115.
  • M. Palkar, M. Noolvi, R. Sankangoud, V. Maddi, A. Gadad, and L. V. Nargund, “Synthesis and Antibacterial Activity of a Novel Series of 2,3-Diaryl-Substituted-Imidazo(2,1-b)-Benzothiazole Derivatives,” Archiv Der Pharmazie 343, no. 6 (2010): 353–9. doi:10.1002/ardp.200900260.
  • K. Srimanth, V. R. Rao, and D. R. Krishna, “Synthesis and Evaluation of Anticancer Activity of Some Imidazothiazolyl, Imidazobenzothiazolyl and Dihydroimidazothiazolyl Coumarins,” Arzneimittel-Forschung 52, no. 5 (2002): 388–92. doi:10.1055/s-0031-1299903.
  • G. Trapani, M. Franco, A. Latrofa, A. Reho, and G. Liso, “Synthesis, in Vitro and in Vivo Cytotoxicity, and Prediction of the Intestinal Absorption of Substituted 2-Ethoxycarbonyl-Imidazo[2,1-b]Benzothiazoles,” European Journal of Pharmaceutical Sciences 14, no. 3 (2001): 209–16. doi:10.1016/S0928-0987(01)00173-7.
  • Nobuaki Amino, Yukitaka Ideyama, Mayumi Yamano, Sadao Kuromitsu, Katsunori Tajinda, Kiyohiro Samizu, Akira Matsuhisa, Masafumi Kudoh, and Masayuki Shibasaki, “YM-201627: An Orally Active Antitumor Agent with Selective Inhibition of Vascular Endothelial Cell Proliferation,” Cancer Letters 238, no. 1 (2006): 119–27. doi:10.1016/j.canlet.2005.06.037.
  • Z. Wan, C. D. Jones, D. Mitchell, J. Y. Pu, and T. Y. Zhang, “Practical Method for Transforming Alkynes into Alpha-Diketones,” The Journal of Organic Chemistry 71, no. 2 (2006): 826–8. doi:10.1021/jo051793g.
  • S. Chen, Z. Liu, E. Shi, L. Chen, W. Wei, H. Li, Y. Cheng, and X. Wan, “Ruthenium-Catalyzed Oxidation of Alkenes at Room Temperature: A Practical and Concise Approach to α-Diketones,” Organic Letters 13, no. 9 (2011): 2274–7. doi:10.1021/ol200716d.
  • M. Chennapuram, N. Reddy, E. Chiranjeevi, C. Bingi, and K. Atmakur, “I2-DMSO-PTSA: A Simple and Metal Free Oxidative Cross Coupling of Imidazo[1,2-a]Pyridines and Methylketones,” RSC Advances 5, no. 25 (2015): 19418–25. doi:10.1039/C4RA15835K.
  • S. Samanta, S. Mondal, S. Santra, G. Kibriya, and A. Hajra, “FeCl3-Catalyzed Cross-Dehydrogenative Coupling between Imidazoheterocycles and Oxoaldehydes,” The Journal of Organic Chemistry 81, no. 20 (2016): 10088–93. doi:10.1021/acs.joc.6b02091.
  • C. Wang, S. Lei, H. Cao, S. Qiu, J. Liu, H. Deng, and C. Yan, “Regioselective Copper-Catalyzed Dicarbonylation of Imidazo[1,2-a]Pyridines with N,N-Disubstituted Acetamide or Acetone: An Approach to 1,2-Diketones Using Molecular Oxygen,” The Journal of Organic Chemistry 80, no. 24 (2015): 12725–32. doi:10.1021/acs.joc.5b02417.
  • S. Lei, G. Chen, Y. Mai, L. Chen, H. Cai, J. Tan, and H. Cao, “Regioselective Copper-Catalyzed Oxidative Cross-Coupling of Imidazo[1,2-a]Pyridines with Methyl Ketones: An Efficient Route for Synthesis of 1,2-Diketones,” Advanced Synthesis & Catalysis 358, no. 1 (2016): 67–73. doi:10.1002/adsc.201500803.
  • S. M. A. Shakoor, D. S. Agarwal, A. Kumar, and R. Sakhuja, “Copper Catalyzed Direct Aerobic Double-Oxidative Cross-Dehydrogenative Coupling of Imidazoheterocycles with Aryl Acetaldehydes: An Articulate Approach for Dicarbonylation at C-3 Position,” Tetrahedron 72, no. 5 (2016): 645–52. doi:10.1016/j.tet.2015.12.012.
  • Siddiq Pasha Shaik, Faria Sultana, A. Ravikumar, Satish Sunkari, Abdullah Alarifi, and Ahmed Kamal, “Regioselective Oxidative Cross-Coupling of Benzo[d]Imidazo[2,1-b]Thiazoles with Styrenes: A Novel Route to C3-Dicarbonylation,” Organic & Biomolecular Chemistry 15, no. 36 (2017): 7696–704. doi:10.1039/c7ob01778b.
  • V. N. Murthy, S. P. Nikumbh, T. Krishnaji, M. V. Madhubabu, J. Subba Rao, L. Vaikunta Rao, and A. Raghunadh, “Amberlite-15 Promoted an Unprecedented Aza Michael Rearrangement for One Pot Synthesis of Dihydroquinazolinone Compounds,” RSC Advances 8, no. 40 (2018): 22331–4. doi:10.1039/c8ra03308k.
  • P. K. Setikam, V. N. Murthy, K. Ravi Ganesh, R. Venkateshwarlu, G. Srinivas Rao, T. Krishnaji, and A. Raghunadh, “A New Facile Iodine-Promoted One-Pot Synthesis of Dihydroquinazolinone Compounds,” ChemistrySelect 3, no. 24 (2018): 6836–9. doi:10.1002/slct.201800695.
  • Ch Jaganmohan, K. P. Vinay Kumar, G. Sandeep Reddy, S. Mohanty, J. Kumar, B. Venkateswara Rao, T. Krishnaji, and A. Raghunadh, “De Novo Synthesis of 2,2-Bis(Dimethylamino)-3-Alkyl or Benzyl 2,3-Dihydroquinazolin-4(1H)-One Compounds,” Synthetic Communications 48, no. 2 (2018): 168–74. doi:10.1080/00397911.2017.1391291.
  • T. Krishnaji, V. N. Murthy, A. Raghunadh, and L. V. Rao, “Simple and Efficient Amberlite 15-Catalyzed Synthesis of Dihydroquinazolinones,” Russian Journal of Organic Chemistry 56, no. 8 (2020): 1468–75. doi:10.1134/S1070428020080199.
  • A. Raghunadh, T. Krishnaji, M. Suresh Babu, V. Narayana Murthy, L. Vaikunta Rao, and U. K. Syam Kumar, “Synthesis of Quinoxalin-2(1H)-Ones and Hexahydroquinoxalin-2(1H)-Ones via Oxidative Amidation–Heterocycloannulation,” SynOpen 4, no. 3 (2020): 54–61.
  • Ch Jaganmohan, K. P. Vinay Kumar, R. Venkateshwarlu, S. Mohanty, J. Kumar, B. Venkateswara Rao, A. Raghunadh, and T. Krishnaji, “A Novel Approach for the Synthesis of Functionalized Hydroxylamino Derivative of Dihydroquinazolinones,” Synthetic Communications 50, no. 14 (2020): 2163–70. doi:10.1080/00397911.2020.1768406.
  • R. Venkateshwarlu, V. N. Murthy, T. Krishnaji, S. P. Nikumbh, R. Jinkala, V. Siddaiah, M. V. M. Babu, H. Rama Mohan, and A. Raghunadh, “Base Mediated Spirocyclization of Quinazoline: one-Step Synthesis of Spiro-Isoindolinone Dihydroquinazolinones,” RSC Advances 10, no. 16 (2020): 9486–91. doi:10.1039/c9ra09567e.
  • K. V. Chandrasekhar, T. Krishnaji, P. Lokesh, and A. A. Pillai, “A Simple and Efficient Ligand-Free Copper-Catalyzed C-N Bond Formation of Aryl (Hetero) Halides and N-Heteroaryl Amines,” Polycyclic Aromatic Compounds (2022)
  • G. Simhachalam, L. V. Rao, Y. Chiranjeevi, R. Venkateshwarlu, R. Sridhar, T. Krishnaji, and A. Raghunadh, “A Simple and Efficient [(n-Bu3Sn)2MO4]n Catalyzed Synthesis of Quinazolinones and Dihydroquinazolinones,” Polycyclic Aromatic Compounds (2021) doi:10.1080/10406638.2021.1986730.
  • J. Rajesh, K. B. S. Kumar, R. Venkateshwarlu, S. P. Nikumbh, J. Subba Rao, V. Siddaiah, H. Ramamohan, T. Krishnaji, and A. Raghunadh, “Iodine Promoted Synthesis of Pyrido[2',1':2,3]Imidazo[4,5-c]Quinoline Derivatives via Oxidative Decarboxylation of Phenylacetic Acid,” Synthetic Communications (2021)
  • G. Simhachalam, L. V. Rao, Y. Chiranjeevi, A. V. D. Rao, M. Ramamohan, T. Krishnaji, and A. Raghunadh, “A Simple and Efficient Synthesis of Imidazoquinoxalines and Spiroquinoxalinones via Pictect-Spengler Reaction Using Wang Resin,” Synthetic Communications (2021)
  • Raghavendra Sakirolla, Krishnaji Tadiparthi, Marzieh Yaeghoobi, and Noorsaadah Abd Rahman, “Dicationic Liquid Synthesis of 1,5 Diazepines,” Asian Journal of Chemistry 30, no. 1 (2018): 107–15. doi:10.14233/ajchem.2018.20920.
  • A. Kamal, T. Krishnaji, and M. N. A. Khan, “Lipase-Catalysed Resolution of 1-Chloro-3-[(4-Morpholin-4-yl-1,2,5-Thiadiazole-3-yl)Oxy]Propan-2-ol. Synthesis of (R)- and (S)-Timolol,” Journal of Molecular Catalysis B: Enzymatic 54, no. 1-2 (2008): 55–9. doi:10.1016/j.molcatb.2007.12.003.
  • A. Kamal, G. B. R. Khanna, and T. Krishnaji, “Lipase-Catalysed Enantiomeric Separation of 3-Hydroxy-4-Tosyloxybutanenitrile: synthesis of (R)-GABOB and (R)-Carnitine,” Helvetica Chimica Acta 90, no. 9 (2007): 1723–30. doi:10.1002/hlca.200790180.
  • K. S. Vadagaonkar, H. P. Kalmode, K. Murugan, and Atul C. Chaskar, “I2 Catalyzed Tandem Protocol for Synthesis of Quinoxalines via sp3, sp2 and sp C–H Functionalization,” RSC Advances 5, no. 8 (2015): 5580–90. doi:10.1039/C4RA08589B.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.