222
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Rodenticidal Activity of Some Quinoline-Based Heterocycles Derived from Hydrazide–Hydrazone Derivative

, , , ORCID Icon & ORCID Icon
Pages 4231-4241 | Received 10 Jan 2022, Accepted 27 May 2022, Published online: 17 Jun 2022

References

  • J. P. Michael, “Quinoline, Quinazoline and Acridone Alkaloids,” Natural Product Reports 21, no. 5 (2004): 650–68. doi:10.1039/b310691h.
  • E. A. E. El‐Helw, A. R. Morsy, and A. I. Hashem, “Evaluation of Some New Heterocycles Bearing 2‐Oxoquinolyl Moiety as Immunomodulator against Highly Pathogenic Avian Influenza Virus (H5N8),” Journal of Heterocyclic Chemistry 58, no. 4 (2021): 1003–14. doi:10.1002/jhet.4233.
  • E. A. E. El-Helw and A. I. Hashem, “Synthesis and Antitumor Activity Evaluation of Some Pyrrolone and Pyridazinone Heterocycles Derived from 3-((2-Oxo-5-(p-tolyl) furan-3(2H)-ylidene) methyl)quinolin-2(1H)-one,” Synthetic Communications 50, no. 7 (2020): 1046–55. doi:10.1080/00397911.2020.1731549.
  • M. Xu, T. Wagerle, J. K. Long, G. P. Lahm, J. D. Barry, and R. M. Smith, “Insecticidal Quinoline and Isoquinoline Isoxazolines,” Bioorganic & Medicinal Chemistry Letters 24, no. 16 (2014): 4026–30. doi:10.1016/j.bmcl.2014.06.004.
  • L. Cheng, P.‐P. Cai, R.‐R. Zhang, L. Han, C.‐X. Tan, J.‐Q. Weng, T.‐M. Xu, and X.‐H. Liu, “Synthesis and Insecticidal Activity of New Quinoline Derivatives Containing Perfluoropropanyl Moiety,” Journal of Heterocyclic Chemistry 56, no. 4 (2019): 1312–7. doi:10.1002/jhet.3502.
  • A. R. Morsy, S. K. Ramadan, and M. M. Elsafty, “Synthesis and Antiviral Activity of Some Pyrrolonyl Substituted Heterocycles as Additives to Enhance Inactivated Newcastle Disease Vaccine,” Medicinal Chemistry Research 29, no. 6 (2020): 979–88. doi:10.1007/s00044-020-02538-z.
  • M. Alam, P. Sarkar, A. Husain, A. Marella, M. S. Zaman, M. Akhter, M. Shaharyar, O. Alam, and F. Azam, “Synthesis of Quinoline-Attached Furan-2(3H)-Ones Having Anti-inflammatory and Antibacterial Properties with Reduced Gastro-intestinal Toxicity and Lipid Peroxidation,” Journal of the Serbian Chemical Society 76, no. 12 (2011): 1617–26. doi:10.2298/JSC110131142A.
  • A. B. A. El-Gazzar, H. N. Hafez, and G. A. M. Nawwar, “New Acyclic Nucleosides Analogues as Potential Analgesic, Anti-inflammatory, Anti-oxidant and Anti-microbial Derived from Pyrimido[4,5-b]quinolines,” European Journal of Medicinal Chemistry 44, no. 4 (2009): 1427–36. doi:10.1016/j.ejmech.2008.09.030.
  • F. Gao, P. Wang, H. Yang, Q. Miao, L. Ma, and G. Lu, “Recent Developments of Quinolone-Based Derivatives and Their Activities against Escherichia coli,” European Journal of Medicinal Chemistry 157 (2018): 1223–48. doi:10.1016/j.ejmech.2018.08.095.
  • S. Mandal, S. Bhuyan, S. Jana, J. Hossain, K. Chhetri, and B. G. Roy, “Efficient Visible Light Mediated Synthesis of Quinolin-2(1H)-ones from Quinoline N-Oxides,” Green Chemistry 23, no. 14 (2021): 5049–55. doi:10.1039/D1GC01460A.
  • L.-Y. Xie, J. Qu, S. Peng, K.-J. Liu, Z. Wang, M.-H. Ding, Y. Wang, Z. Cao, and W.-M. He, “Select Fluor-Mediated Regioselective Nucleophilic Functionalization of N-Heterocycles under Metal-and Base-Free Conditions,” Green Chemistry 20, no. 3 (2018): 760–4. doi:10.1039/C7GC03106H.
  • L.-Y. Xie, Y. Duan, L.-H. Lu, Y.-J. Li, S. Peng, C. Wu, K.-J. Liu, Z. Wang, and W.-M. He, “Fast, Base-Free and Aqueous Synthesis of Quinolin-2(1H)-ones under Ambient Conditions,” ACS Sustainable Chemistry & Engineering 5, no. 11 (2017): 10407–12. doi:10.1021/acssuschemeng.7b02442.
  • A. M. El-Naggar and S. K. Ramadan, “Efficient Synthesis of Some Pyrimidine and Thiazolidine Derivatives Bearing Quinoline Scaffold under Microwave Irradiation,” Synthetic Communications 50, no. 14 (2020): 2188–98. doi:10.1080/00397911.2020.1769673.
  • S. Eswaran, A. V. Adhikari, and R. A. Kumar, “New 1,3-Oxazolo[4,5-c]Quinoline Derivatives: Synthesis and Evaluation of Antibacterial and Antituberculosis Properties,” European Journal of Medicinal Chemistry 45, no. 3 (2010): 957–66. doi:10.1016/j.ejmech.2009.11.036.
  • S. A. Rizk, G. A. Elsayed, and M. A. El-Hashash, “One-Pot Synthesis, Spectroscopic Characterization and DFT Study of Novel 8-Azacoumarin Derivatives as Eco-Friendly Insecticidal Agents,” Journal of the Iranian Chemical Society 15, no. 9 (2018): 2093–105. doi:10.1007/s13738-018-1402-3.
  • H. S. P. Rao, and S. P. Senthilkumar, “Review on the Synthesis of 8-Azasteroids,” Current Organic Chemistry 8, no. 15 (2004): 1521–8. doi:10.2174/1385272043369881.
  • G. S. Ušćumlić, D. Z. Mijin, N. V. Valentić, V. V. Vajs, and B. M. Sušić, “Substituent and Solvent Effects on the UV/Vis Absorption Spectra of 5-(4-Substituted Arylazo)-6-Hydroxy-4-Methyl-3-Cyano-2-Pyridones,” Chemical Physics Letters 397, no. 1-3 (2004): 148–53. doi:10.1016/j.cplett.2004.07.057.
  • M. E. Azab, S. A. Rizk, and N. F. Mahmoud, “Facile Synthesis, Characterization, and Antimicrobial Evaluation of Novel Heterocycles, Schiff Bases, and N-Nucleosides Bearing Phthalazine Moiety,” Chemical & Pharmaceutical Bulletin 64, no. 5 (2016): 439–50. doi:10.1248/cpb.c15-01005.
  • M. El-Hashash, S. Rizk, F. El-Bassiouny, D. Guirguis, S. Khairy, and L. Guirguis, “Facile Synthesis and Structural Characterization of Some Phthalazin-1(2H)-one Derivatives as Antimicrobial Nucleosides and Reactive Dye,” Egyptian Journal of Chemistry 0, no. 0 (2017): 0–420. doi:10.21608/ejchem.2017.915.1043.
  • (a) M. Fukasawa, H. Nishida, T. Sato, M. Miyazaki, and H. Nakaya, “6-[4-(1-Cyclohexyl-1H-tetrazol-5-yl)butoxy]-3,4-dihydro-2-(1H)quinolinone (Cilostazol), a Phosphodiesterase Type 3 Inhibitor, Reduces Infarct Size via Activation of Mitochondrial Ca2+-Activated K+ Channels in Rabbit Hearts,” Journal of Pharmacology and Experimental Therapeutics 326, no. 1 (2008): 100–104. (b) Y. Kimura, T. Tani, T. Kanabe, and K. Watanabe, “Effect of Cilostazol on Platelet Aggregation and Experimental Thrombosis,” Arzneimittelforschung 35, (1985): 1144–1149. doi:10.1124/jpet.108.136218.
  • V. B. Sulimov, I. V. Gribkova, M. P. Kochugaeva, E. V. Katkova, A. V. Sulimov, D. C. Kutov, and F. I. Ataullakhanov, “Application of Molecular Modeling to Development of New Factor Xa Inhibitors,” BioMed Research International 2015 (2015): 120802.
  • I. Ilin, E. Lipets, A. Sulimov, D. Kutov, K. Shikhaliev, A. Potapov, M. Krysin, F. Zubkov, L. Sapronova, F. Ataullakhanov, et al, “New Factor Xa Inhibitors Based on 1,2,3,4-Tetrahydroquinoline Developed by Molecular Modelling,” Journal of Molecular Graphics & Modelling 89 (2019): 215–24. doi:10.1016/j.jmgm.2019.03.017.
  • N. Novichikhina, I. Ilin, A. Tashchilova, A. Sulimov, D. Kutov, I. Ledenyova, M. Krysin, K. Shikhaliev, A. Gantseva, E. Gantseva, et al, “Synthesis, Docking, and In Vitro Anticoagulant Activity Assay of Hybrid Derivatives of Pyrrolo[3,2,1-ij]quinolin-2(1H)-one as New Inhibitors of Factor Xa and Factor XIa,” Molecules 25, no. 8 (2020): 1889. doi:10.3390/molecules25081889.
  • H. M. Al-Ghamdi, “Synthesis and Antimicrobial Activity of Novel Pyrazole Derivatives,” Oriental Journal of Chemistry 35, no. 1 (2019): 391–8. doi:10.13005/ojc/350149.
  • S. K. Ramadan, E. A. E. El-Helw, and M. E. Azab, “2-Cyano-N′-[(1,3-diphenyl-1H-pyrazol-4-yl)methylidene]acetohydrazide in the Synthesis of Nitrogen Heterocycles,” Russian Journal of Organic Chemistry 55, no. 12 (2019): 1940–5. doi:10.1134/S1070428019120224.
  • M. M. Kaddah, A. R. Morsy, A. A. Fahmi, M. M. Kamel, M. M. Elsafty, S. A. Rizk, and S. K. Ramadan, “Synthesis and Biological Activity on IBD Virus of Diverse Heterocyclic Systems Derived from 2-Cyano-N'-((2-oxo-1,2-dihydroquinolin-3-yl) methylene) Acetohydrazide,” Synthetic Communications 51, no. 22 (2021): 3366–78. doi:10.1080/00397911.2021.1970776.
  • S. K. Ramadan, N. A. Ibrahim, S. A. El-Kaed, and E. A. E. El-Helw, “New Potential Fungicides Pyrazole-Based Heterocycles Derived from 2-Cyano-3-(1,3-diphenyl-1H-pyrazol-4-yl) Acryloyl Isothiocyanate,” Journal of Sulfur Chemistry 42, no. 5 (2021): 529–46. doi:10.1080/17415993.2021.1909591.
  • (a) S. K. Ramadan, A. K. El-Ziaty, E. A. E. El-Helw, “Synthesis and Antioxidant Evaluation of Some Heterocyclic Candidates from 3-(1,3-Diphenyl-1H-pyrazol-4-yl)-2-(4-oxo-4H-benzo[d][1,3]oxazin-2-yl)propenonitrile,” Synthetic Communications 51, no. 8 (2021): 1–1283. (b) K. N. Halim, S. A. Rizk, M. A. El‐Hashash, and S. K. Ramadan, “Straightforward Synthesis, Antiproliferative Screening, and Density Functional Theory Study of Some Pyrazolylpyrimidine Derivatives,” Journal of Heterocyclic Chemistry 58, no. 2 (2021): 636–645. doi:10.1080/00397911.2021.1879152.
  • S. K. Ramadan, A. K. El‐Ziaty, and R. S. Ali, “Synthesis, Antiproliferative Activity, and Molecular Docking of Some N‐Heterocycles Bearing a Pyrazole Scaffold against Liver and Breast Tumors,” Journal of Heterocyclic Chemistry 58, no. 1 (2021): 290–304. doi:10.1002/jhet.4168.
  • S. K. Ramadan, E. Z. Elrazaz, K. A. Abouzid, and A. M. El-Naggar, “Design, Synthesis and In Silico Studies of New Quinazolinone Derivatives as Antitumor PARP-1 Inhibitors,” RSC Advances 10, no. 49 (2020): 29475–92. doi:10.1039/d0ra05943a.
  • M. M. Kaddah, A. A. Fahmi, M. M. Kamel, S. K. Ramadan, and S. A. Rizk, “Synthesis, Characterization, Computational Chemical Studies and Antiproliferative Activity of Some Heterocyclic Systems Derived from 3-(3-(1,3-Diphenyl-1H-pyrazol-4-yl)acryloyl)-2H-chromen-2-one,” Synthetic Communications 51, no. 12 (2021): 1798–813. doi:10.1080/00397911.2021.1904991.
  • E. Ramesh, T. K. S. Vidhya, and R. Raghunathan, “Indium Chloride/Silica Gel Supported Synthesis of Pyrano/Thiopyranoquinolines through Intramolecular Imino Diels-Alder Reaction Using Microwave Irradiation,” Tetrahedron Letters 49, no. 17 (2008): 2810–4. doi:10.1016/j.tetlet.2008.02.128.
  • S. A. Rizk, M. A. El-Hashash, A. A. Youssef, and A. T. Elgendy, “A Green Microwave Method for Synthesizing a More Stable Phthalazin-1-ol Isomer as a Good Anticancer Reagent Using Chemical Plasma Organic Reactions,” Heliyon 7, no. 3 (2021): e06220. doi:10.1016/j.heliyon.2021.e06220.
  • S. K. Attia, A. T. Elgendy, and S. A. Rizk, “Efficient Green Synthesis of Antioxidant Azacoumarin Dye Bearing Spiro-Pyrrolidine for Enhancing Electro-Optical Properties of Perovskite Solar Cells,” Journal of Molecular Structure 1184 (2019): 583–92. doi:10.1016/j.molstruc.2019.02.042.
  • M. A. El-Hashash, K. M. Darwish, S. A. Rizk, and F. A. El-Bassiouny, “The Uses of 2-Ethoxy-(4H)-3,1-benzoxazin-4-one in the Synthesis of Some Quinazolinone Derivatives of Antimicrobial Activity,” Pharmaceuticals 4, no. 7 (2011): 1032–51. doi:10.3390/ph4071032.
  • S. K. Ramadan, K. N. Halim, S. A. Rizk, and M. A. El-Hashash, “Cytotoxic Activity and Density Functional Theory Studies of Some 1,3-Diphenylpyrazolyltetrahydropyrimidine Derivatives,” Journal of the Iranian Chemical Society 17, no. 7 (2020): 1575–89. doi:10.1007/s13738-020-01880-8.
  • S. Hindmarch and J. E. Elliott. “Ecological Factors Driving Uptake of Anticoagulant Rodenticides in Predators,” in Anticoagulant Rodenticides and Wildlife (Cham: Springer, 2018), 229–58.
  • Rats have been shown to ingest nine to 46 times the lethal dose before their deaths. See US, Environmental Protection Agency, Risks of non-compliant rodenticides to nontarget wildlife. Background paper for scientific advisory panel on notice of intent to cancel non-RMD compliant rodenticide products (Office of Chemical Safety and Pollution Prevention; Office of Pesticides Programs; Environmental Fate and Effect Division, 2011.
  • S. Hindmarch, J. E. Elliott, and A. Morzillo, “Rats! What Triggers us to Control for Rodents? Rodenticide User Survey in British Columbia, Canada,” International Journal of Environmental Studies 75, no. 6 (2018): 1011–30. doi:10.1080/00207233.2018.1479565.
  • S. M. Nakayama, A. Morita, Y. Ikenaka, H. Mizukawa, and M. Ishizuka, “A Review: Poisoning by Anticoagulant Rodenticides in Non-Target Animals Globally,” Journal of Veterinary Medical Science 81, no. 2 (2018): 298–313.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.